

Study Handbook

International Master of Science in Advanced

Mineral Resources Development

(Joint Master Degree Program)

Dear Students of the Joint Master Degree Program "Advanced Mineral Resources Development",

this Study Handbook provides an overview on the courses of the Joint Master Degree Program "Advanced Mineral Resources Development".

It should not only give you a detailed outline on the content of the program, but also assist you when registering for a course. It describes the topics, learning outcomes and any prerequisites you might need.

In case you have any questions do not hesitate to contact us!
Birgit Knoll
Montanuniversitaet Leoben
Chair of Mining Engineering and Mineral Economics
birgit.knoll@unileoben.ac.at

We wish you good luck for your studies! Glückauf

Univ.Prof. Dipl.Ing. Dr.mont. Peter Moser Montanuniversitaet Leoben Head of the Chair of Mining Engineering and Mineral Economics Vice-Rector for Infrastructure and International Relations

Prof. Dr. C. Drebenstedt TU Bergakademie Freiberg Institute of Mining Engineering and Special Civil Engineering Chair of Mining and Surface Mining

Program Structure

Advanced Mineral Resources Development is a Joint Master Degree Programme between Montanuniversität Leoben (Austria) and TU (Technische Universität)
Bergakademie Freiberg (Germany) and a three partner universities. Students study the first semester at Montanuniversität Leoben, the second semester at TU
Bergakademie Freiberg and the third semester at one of the partner universities. The fourth semester is for the preparation of the master's thesis. The language of instruction is English.

Current partner universities are

- National Mining University Dnipropetrowsk, Ukraine
- China University of Mining and Technology Bejing, China
- Amirkabir University of Technology Tehran, Iran.

Students may propose to pass the third semester at a different international mining university. For this, prior approval from the programme director is required.

The joint master degree programme AMRD comprises compulsory subjects (70 ECTS), restricted electives (14 ECTS), free electives (6 ECTS), the master thesis and the final exam for the master's degree.

	ECTS
Compulsory subjects	70
Restricted electives	14
Free electives	6
Master thesis	25
Presentation and final exam of the master thesis	5
Sum	120

Compulsory subjects

The compulsory subjects consist of the following areas

- Mineral Economics and Project Management (24 ECTS), Montanuniversitaet Leoben
- Mining and Environment (24 ECTS), Technische Universität Bergakademie Freiberg
- Mining Technology (22 ECTS), National Mining University Dnipropetrowsk / China University of Mining and Technology Bejing / Amirkabir University of Technology Tehran, Iran

Restricted electives

The restricted electives cover 14 ECTS, whereas at least 4 ECTS have to be completed at each of the universities.

Free electives

Free electives cover 6 ECTS and can be chosen from any officially recognized university. It makes sense to choose ones free electives from the lists of the restricted electives

The AMRD program covers 120 ECTS points. This corresponds to the usual study period of four semesters (two years). In each semester 30 ECTS points are usually acquired.

All students complete the first semester of the master program at Montanuniversitaet Leoben, the second semester at TU Bergakademie Freiberg, and the third semester at one of the partner universities. The fourth semester, which is usually set aside for the delivery of the master's thesis, can be completed at any of the three partner universities. This study order is compulsory for all students.

Table of Contents

1.	Montanuniversitaet Leoben	8
1	. 1 Compulsory Subjects	8
	Computer Applications in Mining	8
	Deposit Modeling	. 10
	Economic Geology and Mining Economics	. 12
	English for Engineers 1 - The Basics B2.1	. 14
	English for Engineers 3 - Intensifying the Knowledge and Skills C1.1	. 15
	Lab in Mining Engineering	. 16
	Mineral Economics	. 18
	Mining in Austria, in the European Union and worldwide	. 21
	Seminar in Mining Engineering and Mineral Economics 1	. 23
	Surpac Introduction	. 25
1	. 2 Restricted Electives	. 27
	Excavation Engineering	. 27
	Excursion	. 30
	German as a foreign language basic level 1 - A1.1	. 32
	German as a foreign language basic level 3 - A2.1	. 33
	Marine Mining	. 34
	Mine Ventilation	. 36
	Open Pit Mining	. 38
	Risk Management in Mines	. 41
	Russian basic level 1 - A1.1	. 44
	Russian basic level 3 - A2.1	45
	Underground Coal Mining	. 46

		Unde	erground Mining	48
2.		TU B	ergakademie Freiberg	50
	2.	. 1 C	Compulsory Subjects	50
		Brow	nfield Revitalization	50
		Mine	Water: Hydrogeology and Modelling	53
		Radio	pactivity	55
		Recla	amation	57
	2.	. 2 R	estricted Electives	59
		Biote	chnology in Mining	59
		Germ	nan Basic Level 1A	62
		Licen	sing, Stakeholder Involvement and Expectation Management	64
		Russ	ian AMRD	67
	2.	.3 F	ree electives	68
		Geos	cientific Communication II	68
		Huma	an Resource Management and Organizational Behavior (HRMOB)	70
		Interr	national Development and Resources	73
		Interr	national Resource and Environmental Economics and Management	75
		Introd	duction to Quaternary Geology	77
		Orga	nizational Communication	79
		Mete	orology, Climatology, Hydrology	82
3.		Natio	onal Mining University Dnipropetrovsk	84
	3.	. 1 C	Compulsory Subjects	84
		Geor	nechanics	84
		Lega	I Issues of Environment	86
		Mine	ral Processing	88
		Mode	ern Geotechnology of Open-Cast Mining	90

	Modern Geotechnology of Underground Mining	92
	Technical and Economic Assessment of Mining and Post Mining	95
	Underground Construction	97
4.	China University of Mining and Technology (Beijing)	100
4	. 1 Compulsory Subjects	100
	Longwall Mining	100
	Mineral Processing	102
	Rock Mechanics for Underground Mining	104
	Safety Engineering in Mine	106
4	. 2 Restricted Electives	108
	Case Study on Mining Safety	108
	Coal Fire Control	110
	Coal Mine Backfilling Techniques	113
	Engineering CAD	115
	Pit Mining and Environment	117
5.	Amirkabir University of Technology Tehran, Iran	119
5	. 1 Compulsory Subjects	119
	Advanced Engineering Mathematics	119
	Advanced Rock Mechanics	120
	Continuum and Discontinuum Mechanics in Rocks	123
	Design & Planning of Underground Spaces	125
	Numerical Methods in Geomechanics	128
5	. 2 Restricted Electives	130
	Advanced Slope Stability	130
	Plasticity and Damage Mechanics in Rocks	132
	Rock Dynamics	133

Tunnel Basin Site Investigatio	ns	135

1. Montanuniversitaet Leoben

1.1 Compulsory Subjects

Computer Applications in Mining

Course Nb	200.208
Credits	2
Туре	Lecture / Practical
Lecturer	Oberndorfer
C	Course description
Content	Overview of main fields of computer
	application in mining
	Overview of mathematical tools applied, in
	particular optimization
	Calculation models, relation reality – model,
	requirements, constraints
	Ultimate pit (LG): basic assumptions,
	optimization goal
	Consequences of LG model on practical
	application (time, blending, ramps, reasonable
	pit geometry)
	Solution strategy Zhao-Kim
	Mine sequencing: optimization goals, heuristics
	Truck dispatching: optimization goals, system
	requirements
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic knowledge of open pit mining

Objective	On completion of this course the participants shall
(expected results of study	be able to
and acquired competences)	Understand the potential contribution of
	discussed methods on mine design and mine
	operation
	Understand the requirements, threats and
	constraints of these methods
Languages of instruction	English
Teaching and learning	Lecture
method (delivery of skills)	Active participation and discussion
workload for students	
F	urther information
Recommended reading	
Note	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	uploaded at the beginning of the semester.

Deposit Modeling

Course Nb	200.060
Credits	3
Туре	Lecture
Lecturer	Haindl, Oberndorfer
C	Course description
Content	Goals of deposit modeling
	General principles of modeling
	Representation techniques: surface and
	volume/property models
	Interpolation methods incl. introduction to
	geostatistics
	Raw data handling (introduction databases)
	Integration of modeling into mining operation
	(panning/forecast, validation)
	The practical part: software based modeling
	and mine planning
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic knowledge on geology (deposit types
	and characteristics), statistics and open pit
	mining (interaction mining/deposit)
Objective	On completion of this course the participants shall
(expected results of study	be able to
and acquired competences)	Understand the principle of creating geological
	and geometrical models
	Use the basic tools of the mine planning
	software
	Know fundamental methods available and their
	pro and cons

	Design and introduce deposit modeling for a
	Design and introduce deposit modeling for a
	mine operation, in particular knowing the
	essential aspects to be considered
	Analyze block models and calculate reserves
	and resources.
	Create a 3D open pit design
Languages of instruction	English
Teaching and learning	Theoretical part: lecture
method (delivery of skills)	Practical part: covers demonstration with short
workload for students	exercises on real data and a homework
	assignment with final presentation
F	urther information
Recommended reading	
Note	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	uploaded at the beginning of the semester.

Economic Geology and Mining Economics

Course Nb	200.050
Credits	6
Туре	Lecture
Lecturer	Haindl
C	Course description
Content	Introduction
	Economic Geology
	Basics
	Factor of production: deposit
	Reserves and Resources
	Factors of production – labor
	Means of production (incl. energy)
	Cost calculation
	Profitability and investment
	Risk and sensitivity analysis
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
Objective	On completion of this course the participants shall
(expected results of study	be able to:
and acquired competences)	Understand the basics of economic systems
	Understand the special conditions of the
	mining industry
	Classify reserves and resources
	Describe the factors of production
	Understand the basics of cost calculation,
	profitability and investment
Languages of instruction	English

Teaching and learning method	Lectures
(delivery of skills) workload for	Active participation, discussions
students	
I	Further information
Recommended reading	
Note	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	uploaded at the beginning of the semester.

English for Engineers 1 - The Basics B2.1

Course Nb	641.152
Credits	2
Туре	Lecture/Practical
Lecturer	Welsh, Williams
C	Course description
Content	Describe objects, properties, processes
	Basic language of math, chemistry, physics as
	well as engineering (to a very limited degree)
	in the fields studied at the MUL will be
	practiced.
	Exercises involving the exchange of technical
	information, team work on design problems
	and other problem solving and a required
	presentation on a technical subject.
Previous knowledge expected	Good English skills (Minimum: CEF Level B2)
Objective	On completion of this course the participants shall
(expected results of study	be able to:
and acquired competences)	Use the basic vocabulary and grammar forms
	necessary for technicians so they can
	communicate with other engineers without
	difficulty.
Languages of instruction	English
Teaching and learning	Written work
method (delivery of skills)	Talk
workload for students	Classwork
	Final exam

English for Engineers 3 - Intensifying the Knowledge and Skills C1.1

Course Nb	641.161
Credits	2
Туре	Lecture/Practical
Lecturer	Welsh
C	Course description
Content	The content will examine topics of particular
	interest to engineers, primarily outside their
	immediate fields of specialization.
	These will include risk-management, economic
	considerations, environmental impact,
	corporate / institutional accountability (formerly
	CSR) and presentation skills tailored for
	engineers.
	Students are expected to bring their
	knowledge of their specific fields into all
	aspects of the course.
Previous knowledge expected	Good English skills (Minimum: CEF Level B2)
Objective	On completion of this course the participants shall
(expected results of study	be able to:
and acquired competences)	Speak fluently and with confidence about
	complex technical topics
	Present ideas convincingly with self
	confidence
	Use language appropriate for a professional
	engineer, both written and spoken
Languages of instruction	English
F	urther information
Recommended reading	Selected chapters from text books, news articles,
	articles from professional journals, videos from
	the internet.

Lab in Mining Engineering

Course Nb	200.052
Credits	3
Туре	Practical
Lecturer	Heiss, Seidl
(Course description
Content	Mine Visit
	Rock Mass Classification on site
	Rock sample preparation
	Rock testing in the lab
	Interpretation of results
	Stability calculations (based on the developed
	parameters)
	Preparing a scientific report
	Presentation of the results
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Sustainable knowledge in the following fields -
	successful completion of the following lectures:
	o Mining Rock Mechanics (200.179)
	o Underground Mining (200.036)
	Practical experience in an underground mine!
Objective	On completion of this course the participants shall
(expected results of study	be able to
and acquired competences)	Merge the acquired knowledge from the
	lectures Rock Mechanics and Underground
	Mining.
	Work independently!
	Carry out a rock mass classification after
	Barton, Hoek, Bieniawski & Laubscher on the
	mine site
	Prepare a rock sample in the lab

	Carry out rock tests in the lab (UCS,)
	Calculate and interpret the acquired results
	Carry out stability calculations for an
	underground situation
Languages of instruction	English
Teaching and learning	Lectures
method (delivery of skills)	 Underground mine visit (1day)
workload for students	Active participation
	Group sessions with the lecturer
Further information	
Recommended reading	Brady & Brown: Rock Mechanics for
	underground mining. 2004. Print ISBN: 1-
	4020-2064-3.
Note	Will be held in the sense of a "practical course".
	Participants have to prepare and test "their" rock
	sample! This is the base for the stability
	calculations.
	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	uploaded at the beginning of the semester.

Mineral Economics

Course Nb	200.193
Credits	3
Туре	Lecture
Lecturer	Drnek
C	course description
Content	Theory of mineral demand
	Determinants of mineral demand
	Demand functions, elasticities of demand,
	supply-cost functions of mineral resources and
	secondary materials
	Competitive vs. producer markets
	Factors affecting mineral prices, commodity
	exchanges, objectives and instruments of
	mineral policy
	Long-term trends on mineral markets
	Statistics of energy resources and mineral
	commodities.
	The raw-material commodities are introduced
	in detail.
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Good general knowledge is helpful
Objective	On completion of this course the participants shall
(expected results of study	be able to
and acquired competences)	Understand the connections and events on raw
	material markets
	Know the fundamentals for analyses of the raw
	material markets
	Impart knowledge in the field of raw material
	policies and trade

Languages of instruction	English
Teaching and learning	Intensive and permanent active participation;
method (delivery of skills)	i.e.: presentations, pre-reading assignments
workload for students	Critical analysis and argument of the presented
	material
	Teaching and learning method
	Presentation of theory and practical examples
	Question and answer session
	Discussion
	Analysis of current economic situation
F	urther information
Recommended reading	Britton S. et al: Minerals Economics. In: Mining
	Engineering Handbook, SME (2nd ed.,
	Vo.1),p. 43 – 139
	Fettweis G.B.: Der Produktionsfaktor
	Lagerstätte. In: Die elementaren
	Produktionsfaktoren des Bergbaubetriebs.
	Band 1
	Gschwindt, E.: Projektierung von Bergwerken
	im Ausland, In: Die Wirtschaftlichkeit und
	Bewertung im Bergbau. Band III
	Von Wahl: Bergwirtschaft Band I bis III
	Von Wahl: Wirtschaftliche Bewertung von
	Lagerstätten und von Bergwerksunternehmen.
	In: Die Wirtschaftlichkeit und Bewertung im
	Bergbau. Band III
	Business- and Financial section of the
	following newspapers:
	Frankfurter Allgemeine Zeitung
	Neu Zürcher Zeitung
	Süddeutsche Zeitung

	Financial Times
	The Times: London and New York
	Reference Books:
	Gabler: Wirtschaftslexikon
	Further Reading:
	Annual Report Rio Tinto (Internet)
	Annual Report BHP (Internet)
Note	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	uploaded at the beginning of the semester.

Mining in Austria, in the European Union and worldwide

Course Nb	200.140
Credits	1,5
Туре	Lecture
Lecturer	Hartlieb
C	Course description
Content	Mining Industry in Austria and the EU
	Securing Supply of Mineral Resources in
	Europe
	Construction Aggregates in Europe
	World View on Mineral Production
	Artisanal and Small Scale Mining
	Economic Outlook in Mining
	Innovation in Mining
	Operational Excellence Framework in Mining
	Different Presentations by national and
	international mining executives
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic knowledge in mineral economics
	Main economic drivers in the mining industry
Objective	On completion of this lecture the participants shall
(expected results of study	be able to have a good comprehension of:
and acquired competences)	The mining industry in terms of production and
	economic outlook
	Demand and supply of mineral resources
	Critical future issues in the mining industry
	European mineral policies
	Operational Excellence Framework

Languages of instruction	English
Teaching and learning	Lectures, presentations, active participation and
method (delivery of skills)	discussions
workload for students	
F	urther information
Recommended reading	British Geological Survey: World Mineral
	Production 2002 – 06/ L.E. Hetherington et.all.
	 Keyworth, Nottingham: British Geological
	Survey, 2008
	Ekdahl, E.: Mineral Resources in Europe,
	Presentation, International Symposium on the
	Planet Earth, Trondheim, 7-8 February 2008
	Nötstaller, R.: Patterns of Mineral Demand and
	supply global and regional perspectives, in:
	BHM – Berg- und Hüttenmännische
	Monatshefte, 147/2002, H.12, p.402 ff
	Website of the European Union: Raw Materials
Note	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	uploaded at the beginning of the semester.

Seminar in Mining Engineering and Mineral Economics 1

Course Nb	200.043
Credits	1,5
Туре	Seminar
Lecturer	Hartlieb, Knoll
C	course description
Content	Introduction to scientific writing
	Presentation of the Guideline for Scientific
	Writing from the Chair of Mining
	Systematic literature research
	Proper handling and citation of literature
	Development of structure and contents of a
	scientific report or thesis
	Writing a scientific report about a mining-
	related topic from given literature sources
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
Objective	On completion of this course the participants shall
(expected results of study	be able to:
and acquired competences)	Write a scientific report
	Look for information systematically
	Reference correctly
	Structure, layout and format a scientific paper /
	report
Languages of instruction	English
Teaching and learning	Lectures
method (delivery of skills)	Exercises in-class with active participation of the
workload for students	students
	Assignment: writing a report

Further information	
Recommended reading	Guideline for Scientific Writing, Chair of Mining
	Engineering and Mineral Economics,
	Montanuniversitaet
Note	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	uploaded at the beginning of the semester.

Surpac Introduction

Course Nb	200.009
Credits	2
Туре	Lecture / Practical
Lecturer	Oberndorfer
C	ourse description
Content	Mine planning software – capabilities and
	applications
	Data structure, viewing, display, graphical
	appearance, property inquiry (interactive
	working)
	Basic data (1d/2d objects, points/lines): editing,
	import, manipulation (polygon intersection)
	Surfaces (s3d): generation, intersections,
	clipping, volumes, etc.
	Surfaces (f3d, solids): generation, intersection,
	volumes, etc.
	Block models (property model): generation,
	assigning block values (surfaces, simple
	interpolation), analysis using BM (reporting, constraints)
	Geological databases: concept, Surpac-3 rd
	party products interface, viewing, data
	extraction
	Open pit and underground design: tools
	assisting mine design
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	This course focuses on software skills; no
	particular basic knowledge required

	Knowledge in geology and mining,
	mathematical geometry and spatial sensing is
	advantageous but not mandatory
Objective	On completion of this course the participants shall
(expected results of study	be able to
and acquired competences)	Use Surpac for typical educational tasks such
	as a diploma thesis or project work and later
	during professional career. Sound basis for
	further enhancing skills while working with
	Surpac
	Have a good overview on what mine planning
	software can do and have rough idea on effort
	(worktime) required for specific tasks.
Languages of instruction	English
Teaching and learning	Students have to perform an exam exercise
method (delivery of skills)	independently and present the result.
workload for students	
F	urther information
Recommended reading	
Note	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	uploaded at the beginning of the semester.

1. 2 Restricted Electives

Excavation Engineering

Course Nb	200.059
Credits	2,5
Туре	Lecture/Practical
Lecturer	Hartlieb, Sifferlinger
Course description	
Content	This is a general course about rock blasting and
	how it is used in mining and civil engineering. The
	following topics will be covered:
	Basics of explosives engineering
	Blast fragmentation control
	Blasting in drifts and tunnels
	Design of an underground drift blast
	Cautious blasting
	Sinking of shafts and development raises
	Underground production blasting
	Alternative fragmentation methods
	Visit to industry (if possible):
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic Engineering Physics and Math (e.g.
	logarithms and power functions, equations,
	integrals, function analysis)
	Basic Mining Engineering
	Rock Mechanics
Objective	On completion of this course the participants shall
(expected results of study	know about
and acquired competences)	The role of rock blasting in raw materials
	extraction

	The properties and proper use of explosives
	and initiation devices in rock blasting
	Fragmentation; how to describe it and factors
	that influence it
	Outlines about environmental influence of
	blasting like ground vibrations, fly rock and
	noxious gases
	Different types of tunnel rounds and how to
	design in detail a tunnel round with a parallel
	hole cut
	Blast damage in excavation contours and
	design principles to minimize this in tunnels
	and road cuts
	Outlines of shaft sinking and raise driving
	Different methods used in underground
	production blasting for various mining methods
	and required charging
	Outlines of breakage methods like water jets,
	micro waves etc.
Languages of instruction	English
Teaching and learning	Lectures
method (delivery of skills)	Group assignment, 2-3 students working together.
workload for students	(Design of an underground drift blast)
	Oral examinations
	Lecture attendance

Further information	
Recommended reading	Lecture notes in pdf format
Note	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	uploaded at the beginning of the semester.

Excursion

Course Nb	200.198
Credits	2
Туре	Field Trip
Offering period	Summersemester
Lecturer	Hartlieb
C	Course description
Content	Visits of mining operations in Austria, in the
	European Union and overseas as an
	additional training to the theoretical study
	program at the university
	Discussions with mine managers about the
	organization of mining operations and the
	planning of new mines.
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Bachelor in Mineral Resources Engineering or
	Applied Geosciences is essential.
	Detailed knowledge of open pit- and
	underground mining methods
	Knowledge of mine organization
Objective	Application of previously gained knowledge.
(expected results of study	Comparison of theoretical knowledge and
and acquired competences)	application case.
	Comprehensive insight of entire mining
	operations from technological to economic
	aspects, from mining to processing.
Languages of instruction	English

Teaching and learning	Mine visits and tours
method (delivery of skills)	Talks to mine managers and discussion with
workload for students	persons in charge
	Active preparation of the tour points
	Final report after the excursion.
Further information	
Recommended reading	Will be updated on the website according to the
	specific dates and tour points of the excursion.
Note	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	uploaded at the beginning of the semester.

German as a foreign language basic level 1 - A1.1

Course Nb	641.112
Credits	4
Туре	Lecture / Practical
Lecturer	Unterhauser
Course description	
Content	Introduction to the German language
	Basic knowledge of grammar, vocabulary and
	simple communication
	Work with language recognition software.
Objective	On completion of this course the participants shall
(expected results of study	be able to:
and acquired competences)	Work in everyday, private and semi-public
	situations
Languages of instruction	German

German as a foreign language basic level 3 - A2.1

Course Nb	641.000
ECTS	4
Туре	Lecture/Practical
Lecturer	Unterhauser
Course description	
Content	Wiederholen und Festigen der Kenntnisse auf
	Niveau A1.2
	Ausbau von Grundvokabular und –syntax in
	den Bereichen Ernährung, Restaurant,
	Wohnen, Möbel und Spor
	Sprechen anhand von Alltagssituationen mit
	Hilfe eines Lehrbuchs (Berücksichtigung des
	D-A-CH-L Prinzips)
	Näherbringen von landeskundlichen Aspekten
	mit besonderer Berücksichtigung der
	österreichischen Kultur
	Aussprachetraining mit
	Spracherkennungssoftware.
Previous knowledge expected	Basic German skills (Level A1.2)
Objective	On completion of this course the participants shall
(expected results of study	be able to
and acquired competences)	Use German language in an enlarged area of
	topics.
Languages of instruction	German

Marine Mining

Course Nb	200.042	
Credits	1,5	
Туре	Lecture	
Lecturer	Groß, Wamser	
C	Course description	
Content	Introduction in marine mining	
	Marine mining methods	
	Overview of marine mineral deposits	
	Geology and mining methods for different raw	
	materials	
	Environmental impact	
	Marine mining regulations	
	International law of the sea	
	International dispute resolution	
	Safety regulations for offshore employment	
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)	
	Basics of mechanical excavation methods,	
	geology and mineralogy	
Objective	On completion of this course the participants shall	
(expected results of study	be able to	
and acquired competences)	Know the principles of marine mining methods	
	depending on different geological requirements	
	Have a basic understanding of legal	
	requirements for marine mining activities	
	Assess potential legal problems and know	
	mechanics for dispute resolution	
Languages of instruction	English	

Teaching and learning	Lectures
method (delivery of skills)	Active participation and discussion
workload for students	
Further information	
Note	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	uploaded at the beginning of the semester.

Mine Ventilation

Course Nb	200.055
Credits	3
Туре	Lecture
Lecturer	Sifferlinger
C	Course description
Content	Repetition of the basics of mine ventilation
	from BSc program including mine climate
	Context of mine ventilation in the frame of
	mine design and layout
	Basics of air flow mechanics and relevant
	physical laws
	Basics and principles of mine ventilation
	including air flow principles in underground
	mining including ventilation laws
	Analytical mine ventilation calculations
	Numerical mine ventilation calculations,
	demonstration of ventilation software
	Secondary ventilation including design and
	layout
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	 Mathematics 1 (380.110)
	Physics of airflow
	Basics of Underground Mining (200.180)
Objective	On completion of this course the participants shall
(expected results of study	be able to
and acquired competences)	Understand why it is important to have a
	proper mine ventilation system
	Know the work safety risks associated with
	insufficient mine ventilation

	Apply principles of air flow physics to mine
	ventilation problems
	Do analytical calculations of simple ventilation
	networks
	Understand the algorithm which is typically
	used in mine ventilation software packages
	Do the design and layout of a secondary
	ventilation system
	Understand the influence of design
	parameters of secondary ventilation on the
	ventilation results
Languages of instruction	English
Teaching and learning	Lectures
method (delivery of skills)	Homework calculations
workload for students	Active participation and discussion
F	urther information
Recommended reading	Mc Pherson M. J.: Mine Ventilation Handbook
Note	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	uploaded at the beginning of the semester.

Open Pit Mining

Course Nb	200.051
Credits	4,5
Туре	Lecture
Lecturer	Häupl, Oberndorfer
C	Course description
Content	Overview on aspects affecting open pit mining
	Mining situation Austria (design range,
	influencing factors)
	Discussion on overall efficiency / effectivity
	(equipment/personnel/process)
	Quality control (material classes), process
	transformation (extraction, loading/hauling,
	transport), forecast & surveillance, open pit
	design (geometry, equipment)
	Truck haulage: loading & hauling, truck fleet,
	equipment aspects
	Estimation & surveillance
	Discussion of several examples (case studies):
	alternative evaluation, design aspects, decisive
	influencing factors
	Operation monitoring, data management
	Overview on a quarry operation from an
	economical and a technical point of view
	Operation cycle of a typical quarry operation
	during a year's period
	Factors of production: Material, utilities &
	energy, goods and services
	Balance of cost and total revenue

	Business processes: Drilling & Blasting,
	Loading & Hauling, Mineral-Processing,
	Mineral-Stock, Shipment onto the market
	Organizational structure and main processes
	(leading and supporting processes / internal
	and external processes)
	Process organization with a detailed view on
	the supply and value-chain
	Discussion of an specific case study
Previous knowledge expected	Good English skills
	Basic knowledge on open pit mining and
	mining equipment
	Basic knowledge on open pit mining business
	economics
Objective	On completion of this course the participants shall
(expected results of study	be able to
and acquired competences)	Have a knowledge about evaluation, design
	and operation of open pits (hard rock)
	Have a knowledge about organizing, analyzing
	and administrating an open pit operation
Languages of instruction	English
Teaching and learning	Lecture
method (delivery of skills)	Active participation and discussion
workload for students	Case study discussion has a prominent focus on
	interactive collaboration of the participants in
	teamwork

Further information	
Note	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	uploaded at the beginning of the semester.

Risk Management in Mines

Course Nb	200.145
Credits	1,5
Туре	Lecture
Lecturer	Wagner
(Course description
Content	Introduction into the objectives and methods of
	risk management in mines
	Definitions: hazard, risk, damage, severity
	number, risk number
	Types of risks in mining: safety, human,
	geological, technical, economic, contractual,
	political, time, environmental
	Safety risk-safety statistics
	Acceptable and tolerable risks
	Methods of risk identification: brain storming,
	risk check lists, expert risk evaluation
	Methods of risk analysis: Regression and
	correlation analysis, probabilistic event
	analysis, fault tree analysis, Delphi-method,
	Monte Carlo simulation, scenario building
	Risk classification: risk matrix-severity and
	probability; risk register
	Risk treatment: eliminate
	Monitoring: physical, environmental, financial,
	human
	Human factor in risk management

Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Proven knowledge of mining engineering
	(Bachelor in Mineral Resources Engineering,
	examination in major mining engineering
	subjects)
	In case these are missing the student has to
	pass an entrance test at the beginning of the
	course with the following contents:
	 Surface and underground mining methods
	 Mining equipment
	 Mine ventilation
	o Geology
Objective	On completion of this course the participants shall
(expected results of study	be able to:
and acquired competences)	Have an appreciation of the inherent risks in
	mining
	Have skills to identify and quantify mining risks
	Know the risk management process with the
	emphasis on mining risks
	Know risk analysis and evaluation techniques
	Know about basic capabilities to perform risk
	assessment and management in mines.
Languages of instruction	English
Teaching and learning	Lectures
method (delivery of skills)	Active participation and discussion
workload for students	
Examination	Oral examination
Further information	
Recommended reading	Hartman, h. L. and Mutmansky, J. M. (2002):
	Introductory Mining Engineering, John Wiley
	&Sons Inc., 570 pp.

ISO 3100- Risk Management. Intern. Standards
Organization
Wagner, H. (2001): Die Besonderheiten des
Risikomanagements im Bergbau. Berg- und
Hüttenmännische Monatshefte, BHM., 146 Jg.,
Springerverlag Wien, S.37-41.
The assessment methods and the compulsory
readings of this course will be announced in detail
in the first lecture.
The latest version of the lecture notes will be
uploaded at the beginning of the semester.

Russian basic level 1 - A1.1

Course Nb	641.118
Credits	4
Туре	Lecture / Practical
Lecturer	Kotowsky, Leeb
C	Course description
Content	Grammar,
	Vocabulary
	Communication
Previous knowledge expected	None
Objective	On completion of this course the participants shall
(expected results of study	be able to:
and acquired competences)	Read and write in Cyrillic letters
	Introduce themselves
	Say hallo and good buy
	Talk about their friends and families, their
	activities, nationality and spoken languages,
	Write a greeting card and fill in blanks at the
	airport or at a hotel etc,
	Accept invitations and politely reject them
	Use public transport
	Ask somebody for permission
	Invite somebody for a meal
Languages of instruction	English, German, Russian
Teaching and learning	Active participation during the semester,
method (delivery of skills)	Regular attendance
workload for students	Examination at the end of the semester

Russian basic level 3 - A2.1

Course Nb	641.244
Credits	4
Туре	Lecture / Practical
Lecturer	Kotowsky, Leeb
C	ourse description
Content	Grammar,
	Vocabulary
	Communication
Objective	On completion of this course the participants shall
(expected results of study	be able to:
and acquired competences)	Make enquiries at travel agencies, train
	stations, airports etc
	Hold a conversation with travel passengers
	Talk about the weather
	Ask the time, to ask the price
	Order sth. in a restaurant
	Talk about work and economic situation.
Languages of instruction	German, Russian
Teaching and learning	Active participation during the semester,
method (delivery of skills)	Regular attendance
workload for students	Examination at the end of the semester

Underground Coal Mining

Course Nb	200.057
Credits	1,5
Туре	Lecture
Lecturer	Sifferlinger
(Course description
Content	Overview of major aspects of Underground Coal
	Mining:
	World Coal Resources and Production
	Prospecting and Exploration
	Underground Mine Development
	Underground Coal Mining Methods
	Underground Coal Mine Operation and
	Machinery
	Coal Preparation, Storage and Transport
	Underground Coal Mining Investment and Cost
	Underground Coal Mining Health and Safety
	Environmental Impact of the Coal Industry
	Examples of Underground Coal Mining
	Operations
	Outlook and future developments
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Knowledge in Mining Engineering
Objective	On completion of this course the participants shall
(expected results of study	be able to
and acquired competences)	Understand underground coal mining
	operations
	Know the methods of longwall and room &
	pillar mining, including roof control, ventilation,
	machinery, safety, infrastructure and transport.

	Understand the cost and organization of an
	underground coal mine.
	Know the health and safety in underground
	coal mining, including explosion protection,
	roof control, dust suppression, functional safety
	of equipment and personal protection.
Languages of instruction	English
Teaching and learning	Lectures, multimedia-supported (e.g. Video-
method (delivery of skills)	Clips) Power Point Presentation with further
workload for students	reference to special sources.
	Active participation and discussion of
	examples.
	Discussion of accident reports
F	urther information
Recommended reading	Bise, C. J., Modern American Coal Mining,
	Methods and Applications, Society for Mining,
	Metallurgy and Exploration, Englewood 2013
Note	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	uploaded at the beginning of the semester.

Underground Mining

Course Nb	200.036
Credits	4,5
Туре	Lecture
Lecturer	Moser P.
C	ourse description
Content	Underground mining methods.
	Mine development.
	Stoping methods for tabular deposits.
	Rock Mechanic design of room and pillar
	system.
	Pillar extraction mining.
	Longwall mining.
	Cut and fill mining methods.
	Shrinkage stoping.
	Open stoping.
	Caving methods
	Backfill
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Sustainable knowledge in the following fields -
	successful completion of the following lectures:
	o Mining Rock Mechanics (200.179)
	 Basics of Excavation Engineering
	(200.054)
Objective	On completion of this course the participant
(expected results of study	should be able to
and acquired competences)	-on the basis of a practical (deposit) example-:
	Design the access to the deposit
	Develop a mining method
	Discuss the geotechnical requirements and
	implications of different mining methods

	Join together and combine all his acquired
	knowledge (systems thinking)!!
Languages of instruction	English
Teaching and learning	Lectures
method (delivery of skills)	Active participation and discussion.
workload for students	
F	urther information
Recommended reading	Brady, B.H.G. and Brown, E.T.: Rock
	mechanics for underground mining; 3rd Ed.,
	2004
	Cernica, J.; Soil Mechanics; 1995
	Hustrulid: Underground mining methods. 200
	Potvin, Y.; Thomas, E.: Handbook in Mine Fill;
	2005
Note	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	uploaded at the beginning of the semester.

2. TU Bergakademie Freiberg

2.1 Compulsory Subjects

Brownfield Revitalization

Course Nb	SUSBFR .MA.Nr. 090
Credits	6
Туре	Lecture/Practical
Lecturer	Klapperich
(Course description
Content	Technology of disposal sites and tailings:
	Geotechnical aspects related to the
	construction of disposal sites and tailings; site
	survey, investigations and characteristics;
	transport mechanisms of contaminants in the
	underground
	Contaminated sites - investigation assessment
	and reusing (Lifecycle):
	Environmental legislation relevant to
	contaminated sites; Quality control of sampling
	on contaminated sites, analytics of site
	contaminations, reclamation process and
	monitoring; Assessment of water, soil and air
	pollution level (risk assessment); Overview of
	reclamation methods and geotechnical
	securing measures; Safety of operation in
	dealing with contaminated sites; Aspects and
	concepts of site revitalisation (innercity
	areas/landscaping)
	Cost-benefit considerations, case studies:
	Comparing various remediation strategies and
	selecting best option,

	Developing and assessing successful after-
	use scenarios: Risk assessment, marketing
	studies, cost benefit analysis
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	B.Sc. in Geosciences or Geo-Engineering
	Basic Knowledge of Geosystems
Objective	On completion of this course the participant
(expected results of study	should be able to:
and acquired competences)	 Evaluate contaminated sites – soil and
	groundwater contaminations.
	Apply the interdisciplinary approach by
	focusing technique, economy, ecology and
	environmental law. The ovals issue is a
	Brownfield Manager.
Languages of instruction	English
Teaching and learning	The total time budgeted for the cluster is set at
method (delivery of skills)	180 hours (90 hours are spent in class and 90
workload for students	hours are spent on self-study).
F	urther information
Recommended reading	Handbuch: Altlastensanierung und
	Flächenmanagement, Franzius/Wolf/ Brandt/
	Altenbockum;
	TA Abfall/ Siedlungsabfall
	Arbeitshilfen Altlasten, Sustainable Brownfield
	Regeneration: CABERNET Network Report
	Proceedings ECI Conferences "Green
	Brownfields"
Note	The module-grade results from the weighted
	mean of grade earned in the written exam (KA) or
	oral examination (MP) (Predetermination by the
	lecturer) and project report (AP).

Content of KA/MP (weighting 2): Technology of disposal sites and tailings, Contaminated sites - investigation assessment and reusing.

Content of AP (weighting 1): Cost-benefit considerations, developing and assessing successful after-use scenarios.

Mine Water: Hydrogeology and Modelling

Course Nb	MWGEOMO.MA.Nr.2089
Credits	6
Туре	Lecture/Practical
Lecturer	Merkel
C	ourse description
Content	Basic of hydraulic subsurface flow in granular
	and fractured rocks.
	 Basic of transport of contaminants in seepage and groundwater,
	Basic of water balance in particular in mining environments.
	Analytical and numerical modeling.
	Pros and cons of FD and FE models.
	Setting up a 3d steady state flow and transport
	model, discretization, parameterization,
	defining boundary conditions, defining sinks
	and sources.
	Manual and inverse calibration, sensivity
	analysis.
	Special aspects of dewatering open pit and
	deep mines, groundwater recovery and mine
	flooding.
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic knowledge of physics, geology, and
	hydrogeology.
Objective	On completion of this course the participant
(expected results of study	should be able to
and acquired competences)	Improve his knowledge on Hydrogeology and
	in particular in the field of groundwater flow
	and transport with special emphasis on mining

	and rehabilitation and remediation of mining
	related problems.
	Understand basic and complex mining related
	groundwater problems
	Evaluate numerical groundwater models
Languages of instruction	English
Teaching and learning	2 weeks course with exercises (lecture 40h,
method (delivery of skills)	practical training 40h)
workload for students	Work load is 180 hours, comprising 80 hours
	course time and 100 hours working at home. The
	latter comprises time for preparation and
	homework as well as preparation for exams.
F	urther information
Recommended reading	Domenico & Schwartz (1996): Physical and
	Chemical Hydrogeology, Wiley & Sons
	Anderson & Woessner (1992): Applied
	Groundwater modeling - Simulation of flow
	and advective transport, Academic Press
Note	The grade for his module is taken from non-
	weighted average of the written exams and the
	two reports

Radioactivity

Course Nb	SUSRAD.MA.Nr. 2091
Credits	6
Туре	Lecture/Practical
Lecturer	Weyer
(ourse description
Content	Radioactive decay
	Special consideration of Rn222 and Radon
	decay,
	Products
	ICRP principles
	Protection against radiation
	Measurement and sampling,
	Pathways
	Risk analysis
	Optimal remedial procedures
	Decontamination techniques
	Ventilation systems
	• Gases
	Airway resistance
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Fundamentals in engineering and natural
	science
Objective	On completion of this course the participant
(expected results of study	should be able to have a basic knowledge of
and acquired competences)	Radioactive decay
	Measurement of radiation
	• Units
	Technique of sampling
	Decontaminations techniques
Languages of instruction	English

Teaching and learning	Lectures (75h), seminars and practical training,
method (delivery of skills)	excursions to rehabilitation sites (15h).
workload for students	The total time budgeted for the cluster is set at
	180 hours, of which 90 hours are spent in class
	and 90 hours are spent on self-study (incl.
	industrial placement).
Further information	
Recommended reading	ICRP publications, especially ICRP 43 and 65,
	conference proceedings
Note	The grade earned in the oral exam determines the
	overall grade for the cluster.

Reclamation

Course Nb	BBREKL .MA.Nr. 2087
ECTS	6
Туре	Lecture/Practical
Lecturer	Drebenstedt
C	Course description
Content	Impacts of mining and its effects
	Legal requirements for permission
	Scientific fundamentals of reclamation (soil,
	ground water balance,)
	Concepts
	Utilization requirements and realization in the
	post-mining landscaping (agriculture, forestry,
	waterbodies, nature protection, recreation,
	miscellaneous)
	Case studies
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Fundamentals in mathematics and science
Objective	On completion of this course the participant shall
(expected results of study	be able to
and acquired competences)	Understand the parallelism of mine and
	reclamation planning and the fact, why
	reclamation can exceed the mine project
	phase.
	Explain scientifically reclamation measures
	Plan technical measures
	Calculate the financial expenses.
Languages of instruction	English
Teaching and learning	Lecture (45 h), exercise (30 h), practical training
method (delivery of skills)	(15 h).
workload for students	

	Time effort is 180 h and consist of 90 h presence
	time and 90 h self-study (self-study includes
	autonomous and instructed preparation and
	performance of follow-up course work and
	examination preparation.
Further information	
Recommended reading	Pflug (Hrsg.), 1998, Braunkohlentagebau und
	Rekultivierung, Springer Verlag
	Olschowy, Bergbau und Landschaft, 1993,
	Paray Verlag
	Gilscher, Bruns, 1999, Renaturierung von
	Abbaustellen, Verlag Eugen Ulmer Stuttgart
Note	Module grade is equivalent to the grade of oral
	module examination

2. 2 Restricted Electives

Biotechnology in Mining

Course Nb	BIOMIN .MA.Nr. 3043
Credits	4
Туре	Lecture/Practical
Lecturer	Mühling, Schlömann
C	course description
Content	Basics
	 Concepts of microbial energy
	metabolism
	 Chemolithotrophic growth
	 Diversity of electron acceptors
	 Microbial redox reactions with Sulphur,
	iron, manganese, arsenic, uranium.
	Microbial leaching
	 Mechanisms of leaching
	 Microorganisms involved
	 Application of leaching for the
	production of copper, gold and
	diamonds, problem of mine waters.
	Biotechnological treatment of mine waters
	 Microbial sulphate reduction for active
	treatment
	 Microbial iron oxidation
	 Wet lands.
	Lab course
	 Special plating techniques for
	acidophilic bacteria
	 Anaerobic cultivation techniques
	 Measurement of parameters to follow
	growth of relevant microorganisms.

Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Master-degree applied science and
	geoecology or in another area of science or
	engineering.
Objective	On completion of this course the participant shall
(expected results of study	be able to
and acquired competences)	Understand the parallelism of mine and
	reclamation planning and the fact, why
	reclamation can exceed the mine project
	phase.
	Explain scientifically reclamation measures
	Plan technical measures
	Calculate the financial expenses.
Languages of instruction	English
Teaching and learning	Lecture (1 SWS), seminar (1 SWS), lab course (1
method (delivery of skills)	SWS), excursion (0,5 SWS)
workload for students	The module needs 120 h of time, of which 52
	hours are spent in class and the remaining 68
	hours are spent on self-study.
F	urther information
Recommended reading	Barton, L. L. & Hamilton, W. A.: Sulfate –
	Reducing bacteria Environmental and
	Engineered Systems, Cambridge University
	Press
	Lovley, D. R. (Ed): Environmental Microbe-
	Metal Interactions, ASM Press
	Rawlings, D. E., & Johnson, D. B. (Ed):
	Biomining, Springer

	•	Reineke, W. & Schlömann, M.
		Umweltmikrobiologie, Spektrum Akademischer
		Verlag
Note	Th	e grade results from the written exam.

German Basic Level 1A

Course Nb	DEU A1/ 2. Sem. BA. Nr. 949
Credits	4
Туре	Lecture/Practical
Lecturer	Glöckner, Paul
C	Course description
Content	Orientierung in der Stadt beziehungsweise in
	der Firma
	Öffentliche Verkehrsmittel
	Wegbeschreibung
	Berufe und Arbeitsalltag
	Körper und Gesundheit
	Wohnungssuche und –einrichtung
	Lebenslauf
	Kleidung;
	Grammatik: Präpositionen, Frageartikel,
	Modalverben, Possessivartikel, Perfekt,
	Konjunktionen, Demonstrativpronomen,
	Graduierung und Komparativ
Previous knowledge expected	Successful completion of the course German
	Basic Level 1A or proof of equivalent proficiency
	in German.
Objective	On completion of this course the participant
(expected results of study	should have a basic knowledge of
and acquired competences)	The German language
	Listening, speaking, reading and writing skills
	in general language as well as regional and
	cultural studies
Languages of instruction	German

Teaching and learning	Exercise (60 hours)
method (delivery of skills)	The total time budgeted for the course is set at
workload for students	120 hours, of which 60 hours (4 SWS) are spent
	in class and the remaining 60 hours are spent on
	self-studies. Self-studies include preparing before
	and after the lessons as well as preparing for
	examination.
Further information	
Recommended reading	Lagune, Band 1, Hueber
Note	The grade earned in the written exam determines
	the overall grade.

Licensing, Stakeholder Involvement and Expectation Management

Course Nb	SUSLSE. MA. Nr. 088
Credits	6
Туре	Lecture/Practical
Lecturer	Mühling, Schlömann
(Course description
Content	Expectations by the various stakeholders are
	identified as driving forces within a remediation
	project. The management of expectations of all
	involved stakeholders as well as transparent
	assessment and decision procedures are a core
	ingredient of this module, and will be discussed
	using case studies from a great variety of real-
	world projects and experiences. Students will be
	encouraged to contribute their personal and
	professional experiences to the module in order to
	both focus the content to the specific needs of the
	audience and to demonstrate the great cultural
	variety of negotiation and management styles.
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	No previous knowledge of management is
	required.
Objective	Upon completion of industrial activity at a given
(expected results of study	site (e.g., mining, chemical production), liabilities
and acquired competences)	must be investigated, assessed, and
	removed/remediated with respect to safe sage in
	the future. This is an iterative decision process
	involving many parties, often with conflicting
	interests and different ways to influence the
	outcome of this decision process. This module
	addresses the need to handle public inquiries,
	concerns, or conflicts on environmental and

remediation issues. It shows environmental managers, regulators and public servants in this field, and consultants at industrial facilities how to identify the causes of environmental issues and concerns, create community relations programs to address issues or establish a proactive dialogue to prevent or minimize future environmental conflicts, and handle technical and risk communication in a highly efficient manner. The aspects which have to be observed within such a complex process include (but are not restricted to)

- legal requirements,
- economic conditions,
- environmental objectives and regional political aims, communication, information management and negotiation methods.

The subjects will be presented using overview texts and summary texts, graphs, and case studies. Discussions among students and between tutors and students will be facilitated by electronic means of communication such as email and a web-based discussion platform. Special emphasis will be laid on presentation of selected cases and discussion of critical parameters like timing cost, communication problems, information handling. Students will be trained in groups and individually. This module will also feature checklists, forms and worksheets as tools for further reference in the daily work.

Languages of instruction	English
Teaching and learning	S1 (SS): Lectures (4 d), S1 (SS): Seminar (1 d)
method (delivery of skills)	The workload is 180h. It is the result of 40h
workload for students	attendance and 140h self-studies.
Further information	
Recommended reading	Leshy, J.D.: The Mining Law: A Study in
	Perpetual Motion, Resources for the Future,
	Routledge, ISBN: 0915707268, ISBN-13:
	780915707263, 1987, 542 pp
	Plunkett, W. R., Attner, R. F., Allen, G. S.:
	Management: Meeting and Exceeding
	Customer Expectations, Thomson – South
	Western, 2005, ISBN 0324259131, 742 pp
Note	The Grade is generated from the examination
	result(s) with the following weights (w): KA [w: 1]

Russian AMRD

Course Nb	RU AMRD. BA. Nr. 3450
Credits	4
Туре	Lecture/Practical
Lecturer	Seidel
C	course description
Content	Alltags- und studienbezogene Themen
	Preparation for the studies in Dnepropetrvsk
Previous knowledge expected	Successful completion of the course Russian
	basic level 1 - A1.1 at Montanuniversitaet or proof
	of equivalent proficiency in Russian.
Objective	Der Teilnehmer erwirbt ausbaufähige
(expected results of study	Grundkenntnisse und Fertigkeiten der mündlichen
and acquired competences)	und schriftlichen Kommunikation, wobei
	besonderer Wert auf Kommunikation zu
	Alltagsthemen gelegt wird.
Languages of instruction	German
Teaching and learning	Exercise (60 hours),
method (delivery of skills)	The total time budgeted for the course is set at
workload for students	120 hours, of which 60 hours (4 SWS) are spent
	in class and the remaining 60 hours are spent on
	self-studies. Self-studies include preparing before
	and after the lessons as well as preparing for
	examination.
F	urther information
Recommended reading	Russisch für Anfänger MOCT 1
Note	The grade is generated from the examination
	result(s) with the following weights (w): KA [w: 1]

2. 3 Free electives

Geoscientific Communication II

Course Nb	MKOMMU2. MA. Nr. 2018
Credits	5
Туре	Lecture/Practical
Lecturer	Merkel, Matschullat, Stumm, Ratschbacher
C	course description
Content	Detailed database research, data mining, data
	management including raw data, scientific
	writing, rhetoric, and poster compilation.
	Learning and applying strategies of scientific
	enquiries using different techniques and digital
	sources, navigating reference management
	systems and compilation of bibliographies.
	Database concepts, publication strategies,
	citation of publications, Digital Object Identifier
	(DOI®) System, techniques for primary data
	publication incl.
	Meta data concepts
	Rhetoric and promoting results by means of
	scientific posters
	Working on a scientific topic for a defined time,
	writing a 10 pages paper and presenting the
	results in an oral presentation.
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
Objective	On completion of this course the participant shall
(expected results of study	be able to
and acquired competences)	Perform scientific database research and
	documentation as well as scientific writing,
	designing a scientific poster and presenting
	results in an oral talk.

Languages of instruction	English
Teaching and learning	Seminar, lectures
method (delivery of skills)	The workload is 150h. It is the result of 30h
workload for students	attendance and 120h self-studies.
Further information	
Recommended reading	Horatschek & Schubert (1998). Richtlinie für
	die Verfasser geowissenschaftlicher
	Veröffentlichungen
	Poetzsch, E. (2002). Information Retrieval:
	Einführung - Potsdam, Verl. für Berlin-
	Brandenburg.
Note	The grade is generated from the examination
	result(s) with the following weights (w):
	AP: Scientific manuscript (10 pages) [w: 2]
	AP: Oral talk [w: 1]

Human Resource Management and Organizational Behavior (HRMOB)

Course Nb	HRMOB. MA. Nr. 3203
Credits	5
Туре	Lecture/Practical
Lecturer	Nippa
C	ourse description
Content	Introduction
	Organizational Behavior (OB)
	 Individual level (foundations of
	individual behavior; impacts of
	individual characteristics; impact of
	situational factors)
	 Group level (foundations of group
	behavior, understanding work teams;
	group processes e.g. communication,
	power, conflict)
	o Leadership
	Human Resource Management (HRM)
	 Changing Nature of HRM
	o HRM Planning
	Human Resource Adjustments
	 Training and Developing HR
	 Compensating HR
	Presentations and Conclusions
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
Objective	On completion of this course the participant shall
(expected results of study	be able to
and acquired competences)	Understand the relevance of human resources
	for organizations and the key concepts of
	human behavior in organizations.

	Appreciate how the human side of
	management is an essential complement to
	the technical skills you are learning in other
	courses.
	Learn concepts and approaches that will
	enable you to analyze HR and organizational
	problems and to develop appropriate
	solutions.
	Develop the knowledge and skills you need to
	be a successful manager of yourself and
	others.
Languages of instruction	English
Teaching and learning	Lectures
method (delivery of skills)	The workload is 90h. It is the result of 30h
workload for students	attendance and 60h self-studies.
F	urther information
Recommended reading	Mathis, R.L.; Jackson, J.H.: "Human Resource
	Management", 6th Ed. South Western College
	Publishing: Cincinnati 2006
	Robbins, S.P.; Judge, T.A.: "Organizational
	Behavior", 11th Ed. Pearson Prentice Hall:
	Upper Saddle River, N.J. 2007
Note	The Grade is generated from the examination
	result(s) with the following weights (w):
	KA: Mid term test [w: 1], KA: Final test [w: 3]

Further information	
Recommended reading	Ehlers, J. (1995): Quaternary and glacial
	geology Wiley & Son, New York, 578S.
	Elias, S.A. (Ed.)(2007): Encyclopedia of
	Quaternary science Elsevier, 4 volumes,
	3365 pp.
Note	The grade is generated from the examination
	result(s) with the following weights (w):
	KA [w: 1]

International Development and Resources

Course Nb	IDEVRES. MA. Nr. 3417	
Credits	6	
Туре	Lecture/Practical	
Lecturer	Stephan	
C	Course description	
Content	Measuring Development	
	Theories of Economic Development	
	Development Policies: Approaches, Failures,	
	and New Consensus?	
	The Role of Natural Resources for Economic	
	Development and Welfare	
	Trade Policy in the Framework of	
	Development Policy	
	Current Issues in Development Policy	
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)	
	Knowledge at Bachelor level in business	
	administration is required.	
Objective	On completion of this course the participant shall	
(expected results of study	be able to	
and acquired competences)	Understand the implications of management of	
	firms in the environment of developing	
	economies.	
	Understand that natural resources can easily	
	turn into a curse, if they are not included into a	
	coherent national development policy.	
Languages of instruction	English	
Teaching and learning	Lecture, exercises	
method (delivery of skills)	The workload is 180h. It is the result of 60h	
workload for students	attendance and 120h self-studies.	

Further information	
Recommended reading	 Todaro, M. P.: Economic Development, 9th edition, Addison Wesley, New York, 2006 Various recent Journal articles from e.g. "World Development", "World Bank Economic Review"; "Journal of Development Economics". World Bank Development Report (current years)
Note	The Grade is generated from the examination result(s) with the following weights (w): KA [w: 4]

International Resource and Environmental Economics and Management

Course Nb	IREEM. MA. Nr. 2082
Credits	6
Туре	Lecture/Practical
Lecturer	Bongaerts
C	ourse description
Content	Environmental management (EM)
	Sustainability and environmental management
	(SEM)
	Economics of Resources (ER)
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
Objective	On completion of this course the participant shall
(expected results of study	be able to
and acquired competences)	Know about environmental management, in
	particular at the level of (industrial)
	organizations. Contemporary leading
	principles, such as sustainability, prudent
	handling of energy and resources will be
	introduced.
	Apply the theoretical principles to practical
	problems of decision-making and
	management.
Languages of instruction	English
Teaching and learning	Lecture, exercises
method (delivery of skills)	The workload is 180h. It is the result of 60h
workload for students	attendance and 120h self-studies.

Further information	
Recommended reading	 A syllabus will be handed out to students at the beginning of the semester Reports by companies on environmental management and on sustainability Websites to be identified in the lectures Kolk, A. (2000) Economics of Environmental
	 Management. Harlow, England: Financial Times Prentice Hall, Pearson Education.
Note	The grade is generated from the examination result(s) with the following weights (w): KA [w: 4], AP: Case studies (15 pages) [w: 1]

Introduction to Quaternary Geology

Course Nb	QUAGEO. MA. Nr. 3223
Credits	3
Туре	Lecture/Field Trip
Lecturer	Breitkreuz
C	ourse description
Content	Proxies for paleoclimatic variation in the last
	2.5 Million years
	Chronostratigraphic and other tools for
	stratigraphic correlation of the Quaternary
	Important archives: lake- and marine
	sediments, ice cores
	Glacial and periglacial processes and glacial
	sedimentology
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Principles of Geoscience (Secondary Subject)
	or equivalent modules.
Objective	On completion of this course the participant shall
(expected results of study	be able to
and acquired competences)	Gain knowledge and understand the basic
	processes and techniques in the field of
	Quaternary Geology, and in particular in the
	field of paleoclimatic variation.
Languages of instruction	English
Teaching and learning	Lecture, field trip, practical application
method (delivery of skills)	The workload is 90h. It is the result of 38h
workload for students	attendance and 52h self-studies.
	Self-studies include assignments, preparation and
	wrapping up of lectures as well as preparation of
	examinations.

Further information	
Recommended reading	Ehlers, J. (1995): Quaternary and glacial
	geology Wiley & Son, New York, 578S.
	Elias, S.A. (Ed.)(2007): Encyclopedia of
	Quaternary science Elsevier, 4 volumes,
	3365 pp.
Note	The grade is generated from the examination
	result(s) with the following weights (w):
	KA [w: 1]

Organizational Communication

Course Nb	ORGCOMM. MA. Nr. 3366
Credits	6
Туре	Lecture/Practical
Lecturer	Hinner
C	ourse description
Content	Organizational communication theory, social
	components of communication, social
	networks, diversity and communication,
	identity, corporate culture and communication,
	power and communication, negotiation,
	attitudes, and persuasion, conflict
	communication, internal and external
	communication, formal and informal
	communication, stakeholder communication,
	crisis communication, globalization,
	technology and communication.
	The tutorial integrates the above topics into an
	applied context (e.g. the resource industry,
	engineering, etc.). Participants will analyze
	and discuss the topics and contexts in small
	groups and present the results informally and
	formally throughout the semester.
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
Objective	The module seeks to transmit the theoretical
(expected results of study	foundation for organizational communication and
and acquired competences)	apply it in a real world context to see how
	effective internal and external communication can
	transmit competence, credibility, and ethics to all
	essential stakeholders within and without
	organizations as well as the public at large.

Languages of instruction	English
Teaching and learning	Lectures, exercises.
method (delivery of skills)	The workload is 180h. It is the result of 60h
workload for students	attendance and 120h self-studies. Self-study time
	includes reading the relevant literature,
	preparation and follow-up work for in-class
	participation as well as preparation time for the
	written exam, i.e. "Klausurarbeit" and the
	assignments.
F	urther information
Recommended reading	 The script is sold at the beginning of the semester. Conrad, C., & Poole, M.S. (2002). Strategic organizational communication Fort Worth: Harcourt. Hinner, M.B., Ed. (2007, 2010). Freiberger Beiträge zur interkulturellen und Wirtschaftskommunikation, Volume 3 and 6. Frankfurt am Main:
	 Peter Lang. Keyton, J. (2005). Communication and organizational culture: A key to understanding work experiences. Thousand Oaks: Sage. May, S., & Mumby, D.K. (2005). Engaging organizational communication theory and research. Thousand Oaks: Sage.

Note	The Grade is generated from the examination
	result(s) with the following weights (w):
	KA* [w: 4], AP*: Active Written and Oral
	Participation, Presentations, and Assignments in
	the Course [w: 1]
	* In Modules with more than one exam, this
	exams has to be pass successfully respectively
	has to have a result at least "ausreichend" (4,0).

Meteorology, Climatology, Hydrology

Course Nb	METHYDR. BA. Nr. 182
Credits	6
Туре	Lecture/Practical
Lecturer	Breitkreuz
C	ourse description
Content	Atmospheric dynamics, radiation budget,
	global energy balance, meteorological
	parameters, global, regional, local climates
	and their dynamics, paleoclimatology, climate
	change.
	Hydrological cycle and water budgets,
	precipitation formation, heavy rain and design
	depth of precipitation, snow accumulation and
	ablation, evapotranspiration determination and
	calculation, discharge formation, concentration
	and dynamics.
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Principles of Physics and Mathematics
Objective	On completion of this course the participant shall
(expected results of study	be able to
and acquired competences)	Know the basics of Meteorology and
	Climatology as well as Hydrology
	Understand the most important parameters
	and processes and to interpret related results.
	The links between the partial modules is a
	prerequisite for any application of models and
	the understanding of more complex and
	advanced tasks in Atmospheric and Climate
	Science and in Hydrology.
Languages of instruction	English

Teaching and learning	Lecture, Alternating Met-Hydr / Exercises
method (delivery of skills)	The workload is 180h. It is the result of 90h
workload for students	attendance and 90h self-studies. The latter
	comprises preparatory work and repetitions of the
	lectures and exercises and exam preparations.
F	urther information
Recommended reading	Barry RG, Chorley RJ (2003) Atmosphere,
	weather and climate. 8th ed. Routledge
	Dyck S, Peschke G (1995) Grundlagen der
	Hydrologie. 3. Aufl. Verlag für Bauwesen,
	Berlin;
	Emeis S (2000) Meteorologie in Stichworten.
	Hirt Verlag;
	Hupfer P, Kuttler W (2005) Witterung und
	Klima. 11. Aufl. Teubner Verlag;
	Kraus H (2004) Die Atmosphäre der Erde. 3.
	Aufl. Springer Verlag;
	Maidment, DR (1992) Handbook of Hydrology.
	McGraw-Hill;
	Maniak U (2005) Hydrologie und
	Wasserwirtschaft. Eine Einführung für
	Ingenieure. 5. Aufl. Springer-Verlag;
	Schönwiese CD (2008) Klimatologie. 3. Aufl.
	Ulmer Verlag;
	Zmarsly E, Kuttler W, Pethe H (2007)
	Meteorologisch-klimatologisches
	Grundwissen. Eine Einführung mit Übungen,
	Aufgaben und Lösungen. 3. Aufl. Ulmer Verlag
Note	The Grade is generated from the examination
	result(s) with the following weights (w):
	KA [w: 1]

3. National Mining University Dnipropetrovsk

3.1 Compulsory Subjects

Geomechanics

Course Nb	
Credits	6
Туре	Lecture/Practical
Lecturer	Babets, Sdvyzhkova
C	course description
Content	Basics of continuum mechanics
	Strength theories and failure criterions
	Post-failure behavior of rocks
	Numerical simulation of rock stress-strain state
	Support loading
	Opening stability
	Safe factor and probability of failure
	Geomechanical processes at longwall mining
	Mining rate effect
	Dynamic manifestations of rock pressure
	Methods of observation in situ
	Rock mass properties and
	Probability estimation of scale effect.
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Mathematic-scientific fundamentals, geology,
	basics of elasticity theory

Objective	The module provides the development of
(expected results of study	expertise and methodological skills in the field of
and acquired competences)	rock mechanics.
	On completion of this course the participant shall
	be able to
	Know the theory and practical rock
	engineering
	Estimate the geomechanical situation and
	predict the behavior of rock mass in different
	geological terms
	Simulate the rock stress-strain state
	Determine support parameters providing the
	effective mining and safety.
	Carry out geomechanical monitoring to
	forecast the rock pressure manifestations.
Languages of instruction	English
Teaching and learning	Lecture 45h, exercises (30 h), practical training
method (delivery of skills)	(15h)
workload for students	Time effort is 180 hours and consist of 90 h
	presence time and 90 h self-study (self-study
	includes autonomous and instructed preparation,
	home work and preparation for exams).
F	urther information
Recommended reading	Rock mechanic (Novy druc, 2003)
	Rock Mechanics: For Underground Mining
	(Springer, 2004)
	Practical rock engineering (Balkema, 2007)
Note	The grade for this module is the average grade of
	the written exam and 2 home works.

Legal Issues of Environment

Course Nb	
Credits	2,5
Туре	Lecture/Practical
Lecturer	Grischak, Shashenko
C	Course description
Content	Analysis and characteristics of the EU
	environmental policy influence to the legal
	issues of the mining industry.
	Targets, principles and requirements of
	environmental law.
	Legal protection.
	Access to information, public participation in
	decision-making and access to justice in
	environmental matters.
	Conformance inspection and environmental
	liability.
	Environmental protective power.
	Industrial objects.
	Transportation gas emissions.
	Ozone protection and climate change.
	Water protection.
	Integrated waste management.
	Regulation of production circulation.
	EU in International Environmental Law and
	Policy
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic knowledge on mineral and their using in
	society, environmental law, legal issues of the
	mining industry.

Objective	On completion of this course the participant shall	
(expected results of study	be able to	
and acquired competences)	improve their basic knowledge with respect to	
	issues of the environmental law in mining in	
	EU, Ukraine, Russian Federation.	
Languages of instruction	English	
Teaching and learning	12 weeks course with exercises (lecture 20h,	
method (delivery of skills)	practical training 10h).	
workload for students	Work load is 75 hours, comprising 30 hours	
	course time and 45 hours working at home. The	
	latter comprises time for preparation and home	
	work as well as preparation for exams.	
Further information		
Recommended reading	Dhondt Nele. Integration of Environmental	
	Protection into other EC Policies. Legal Theory	
	and Practice. Groeningen; Europa Law	
	Publishing, 2003.	
	Hedemann-Robinson Martin. Enforcement of	
	European Union Environmental Law:	
Note	The grade for his module is taken from non	
	weighted average of the written exams and the	
	one report.	

Mineral Processing

Course Nb	
Credits	6
Туре	Lecture/Practical
Lecturer	All involved lectures of the master course Ore
	Concentration and Technologies of Mineral
	Processing,
C	Course description
Content	Analysis of literature and science works;
	testing geological equipment and methods for
	technological estimate of minerals
	Realization of calculations and numerical
	simulations
	Scientific analysis and generalization of the
	results (period of the months).
	Preparation of scientific work and paper in a
	colloquium (30 min oral presentation with
	discussion).
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Proof of the successful conclusion of
	mandatory and optional modules (see study
	and examination regulations).
Objective	On completion of this course the participant shall
(expected results of study	be able to
and acquired competences)	Solve scientific tasks in the field of advanced
	mineral processing
	Prepare a scientific presentation of its work
	and defend it in front of an
	audience.(Ecological aspects also have to be
	considered in the work.)

	The master thesis is a kind of examination
	which completes the entire course. The work
	is the proof, that the students are able to solve
	scientific problems by their own.
Languages of instruction	English
Teaching and learning	Lecture 45h, exercises (30 h), practical training
method (delivery of skills)	(15h)
workload for students	Time effort is 180 hours and consist of 90 h
	presence time and 90 h self-study (self-study
	includes autonomous and instructed preparation,
	home work and preparation for exams).
F	urther information
Recommended reading	Guideline for the preparation of scientific
	works at TU Bergakademie Freiberg from
	27.06.2005, DIN 1422, part 4 (08/1985)
Note	The overall grade for the cluster is a computed of
	the grade for thesis (weighting 2) and the grade
	for colloquium (weighting 1).

Modern Geotechnology of Open-Cast Mining

Course Nb	
Credits	3
Туре	Lecture/Practical
Lecturer	Cherep, Lozhnikov
C	course description
Content	Study of modern approaches to the selection of the rational development systems and mining and transport againment in open cost.
	 mining and transport equipment in open cast mining Complex development of open casts and the
	principles of technogenic deposits' formation • Classification of technogenic formations according to purpose
	 Systematization of conditions Choice of effective technology of technogenic deposits' forming and their further mining.
Previous knowledge expected	 Good English skills (Minimum: CEF Level B1) Basic knowledge on mineral and their using in society, mineral prospecting and exploring, evaluation of deposits.
Objective (expected results of study	On completion of this course the participant shall be able to
and acquired competences)	 Solve scientific problems related to rational and complex deposit development of open cast mining Analyze and substantiate the selection of development system and mining and transport equipment
	Systematize conditions according to which

	technogenic deposits are formed and
	determine the technology of their formation
Languages of instruction	English
Teaching and learning	16 weeks course with exercises (lecture 32h,
method (delivery of skills)	practical training 20h).
workload for students	Work load is 90 hours, comprising 52 hours
	course time and 38 hours working at home. The
	latter comprises time for preparation and home
	work as well as preparation for exams.
F	urther information
Recommended reading	 Ekologiya girnychogo vyrobnytstva / Baka M., Gumenik I., Redchits 2004. (ukr) Formuvannya ta rozrobka takhnogennykh rodovysch / Gumenik I., Semeniy P 2012. (ukr) Klassifikatsiya tehnogennykh formirovaniy pri otkrytykh gornykh rabotakh / Gumenik I. // Gorny jurnal 1988 №12 S. 53-56. (rus) Nauchnye osnovy ratsional'nogo prirodopol'zovaniya pri otkrytoi razrabotke mestorojdeniy: monografiya / Pivniak G., Gumenik I., Drebenstedt C., Panasenko A 2011. (Rus)
Note	The grade for his module is taken from non weighted average of the written exams and the two reports.

Modern Geotechnology of Underground Mining

Course Nb	
Credits	3
Туре	Lecture/Practical
Lecturer	Dychkovs'kiy, Kovalevs'ka
	Course description
Content	Knowledge of new mining methods of mineral
	deposits extraction together with new methods
	of roof management during high rater of the
	longwall advance.
	Mathematical simulation of the support
	functioning in development mine workings,
	study stress-strain state of the rock massif and
	development of new bolt support designs.
	Unmanned mineral extraction technologies
	development using electro-hydraulic
	management systems of machinery.
	Plough systems are examined for coal
	extraction from thin and very thin seams.
	Analytical models describing geomechanical
	interaction "massif – support" system
	elements.
	Knowledge about boreholes underground
	gasification technology.
	Research of gas hydrates and development of
	technologies for their extraction scrutinized.

Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic knowledge on mineral and their using in
	society, mineral prospecting and exploring,
	evaluation of deposits.
Objective	On completion of this course the participant shall
(expected results of study	be able to
and acquired competences)	Improve their basic knowledge with respect to
	new progressive technologies in underground
	mining, management of strain and stress state
	of the massif substantiation of rational
	parameters of various types of support and
	others.
Languages of instruction	English
Teaching and learning	4 weeks course with exercises (lecture 35h,
method (delivery of skills)	practical training 10h).
workload for students	Work load is 90 hours, comprising 45 hours
	course time and 45 hours working at home. The
	latter comprises time for preparation and home
	work as well as preparation for exams.
F	urther information
Recommended reading	Methods of calculation displacement and
	strengthening of edge rock mining excavations
	(Lizunov Pres, 2010 Rus).
	New techniques and technologies in mining
	(Balkema, 2010)
	Technical and Geoinformational Systems in
	Mining (Balkema, 2011)
	Technology of underground mining of sheeted
	mineral deposits (Poligrafist,2003 Rus)

	Development of scientific bases of lifting the
	stability of mine excavations (Lizunov Pres,
	2010 Rus)
Note	The grade for his module is taken from non
	weighted average of the written exams and the
	two reports.

Technical and Economic Assessment of Mining and Post Mining

Course Nb	
Credits	6
Туре	Lecture/Practical
Lecturer	Bardas
C	Course description
Content	Pros and cons of mining on new territories.
	Evaluation of potential losses and incomes of
	mining project realization.
	Calculation of mining project costs.
	Choice of mining technique on mineral
	deposit's design stage.
	Economic assessment of managerial
	decisions during the pit closure stage.
	Elimination of mining enterprises and their
	transformation in ecologically sustainable
	systems.
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic knowledge of environmental economics.
Objective	On completion of this course the participant shall
(expected results of study	be able to
and acquired competences)	Improve their knowledge of economic
	assessment of mining and post mining with
	respect to reclamation of post mining territory,
	utilization of mine water, usage of mine
	workings and extracted rocks during the
	exploitation period of coal mines and after it.
Languages of instruction	English

Teaching and learning	16 weeks course with exercises (lecture 40h,
method (delivery of skills)	practical training 40h)
workload for students	praetieal training terry
Workload for Stadents	Workload is 180 hours, comprising 80 hours
	course time and 100 hours working at home. The
	latter comprises time for preparation and
	homework as well as preparation for exams.
F	urther information
Recommended reading	Adler, Claassen, Godfrey, and Turton, Water,
	mining, waste: South Africa p. 33 – Vol. 2, No.
	2 (2007)
	Bosson, R., Varon, B. Mining industry and the
	developing countries. [excludes fuel sources
	and construction materials], Oxford University
	Press,New York, 2008, 304
	Rebecca A. Adler, Marius Claassen, Linda
	Godfrey, and Anthony R. Turton, Water,
	mining, and waste: an historical and economic
	perspective on conflict management in South
	Africa, The Economics of Peace and Security
	Journal, ISSN 1749-852X
	Sweigard, R.J. , Ramani, R.V. A regional
	comparison of postmining land use practices
	(1983)
Note	The grade for this module is taken from non-
11010	weighted average of the written exam, report and
	two essays

Underground Construction

Course Nb	
Credits	3
Туре	Lecture/Practical
Lecturer	Kovalenko, Shashenko, Solodyankin
C	course description
Content	Peculiarities of interaction between society
	and nature at the present stage.
	Current status and problems of development
	of underground space.
	Interaction of an underground facility with the
	surrounding natural environment.
	Re-use of underground facilities and waste
	mine workings.
	Use of underground space of cities.
	Underground structures of the transport
	destination.
	Underground facilities for public use.
	Industrial underground structures.
	Buildings for Energy industry.
	Underground storage tanks.
	Facilities for special purposes.
	Integrated use of underground space.
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic knowledge of geomechanics and
	construction technology of underground
	workings.

Objective	On completion of this course the participant shall
(expected results of study	be able to
and acquired competences)	Know the comprehensive utilization of
	underground space, technologies of
	construction of underground facilities by open,
	underground and special methods of
	construction, the work organization, and the
	environmental aspects of underground
	construction.
	Take reasonable method of construction of the
	object, technology and equipment for
	construction of the object, to determine the
	basic parameters of the organization of work.
Languages of instruction	English
Teaching and learning	Lectures (22 hours), practical training (12 hours)
method (delivery of skills)	Work load for the course is 90 hours, of which 34
workload for students	hours are spent in the class, 4 hours are devoted
	to consultations, 2 hours are spent on exam and
	50 hours of are spent on self-study.
F	urther information
Recommended reading	Hall, L.: Underground Buildings: More Than
	Meets the Eye, Quill Driver Books, 2004
	Lysikov, B., L. Kaufmann, L.: Underground
	structures, Nord-Press, Donetsk, 2005
	Sinha, R.S. (Ed.): Underground Structures:
	Design and Construction. Elsevier Science,
	1991
	Sterling, R., Carmody, J.: Underground Space
	Design, Wiley & Sons Ltd, 1993

Note	The grade for this module is taken from weighted
	average of the written exams and report
	proportionally to the hours spent on lectures and
	practical training.

4. China University of Mining and Technology (Beijing)

4.1 Compulsory Subjects

Longwall Mining

Course Nb	CUMTB011MAOB1
Credits	6
Туре	Lecture/Site visit
Lecturer	Weidong Pan
C	Course description
Content	Overview of Longwall Mining
	Longwall Mining Trends.
	Longwall Mining Process
	Design, Management and Parameters of
	Longwall Mining
	Alignment Longwall Mining Method
	Incline Longwall Mining Method
	Slicing Longwall Mining Technology
	Longwall Top-coal Caving Technology
	Heavy Pitch Longwall Mining Technology
	Final Comprehensive Design Project
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic knowledge on stress and strain
	Basic knowledge on coal mine geology
Objective	On completion of this course the participants shall
(expected results of study	be able to have
and acquired competences)	necessary knowledge, skills, tools and ability
	to design a complete longwall mining system
	and primary means of extracting coal.
	overall design of longwall system as well as
	the individual design of the various sub-
	systems and their interrelation to other mine

	systems.
	the responsibility of a working mining
	engineer.
Languages of instruction	English
Teaching and learning	Method of Teaching: lecture + site visit + Written
method (delivery of skills)	or oral exam (90 minutes) and one homework
workload for students	Workload: The total time budgeted for the cluster
	is set at 180 h (60 academic hours are spent in
	class, 30 hours are spent in site visit and 90 hours
	are spent on self-study).
Further information	
Recommended reading	Syd S. Peng. Longwall Mining(2nd Edition).
	New York : Wiley, 2006
	W.D. Pan. English for Coal Mining
	Engineering. Beijing: Coal Industry Press,
	2014, P49
Note	

Mineral Processing

Course Nb	CUMTB011MAOB3
Credits	5
Туре	Lecture + site visit
Lecturer	Weiwei Xie
C	Course description
Content	Introduction of Mineral Processing
	Crushing
	Grinding
	Screening and Classification
	Gravity Separation
	Magnetic Separation and Electrical Separation
	Forth Floatation
	Ore Sorting
	Dewatering
	Tailing Disposal
	Processing and Applications of Coal Bearing
	Kaolinite, Gangue, and Flyash
	Mineral Processing Plant Design
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic knowledge on physics and chemistry
Objective	On completion of this course the participants shall
(expected results of study	be able to have
and acquired competences)	necessary knowledge, skills, tools and ability
	to design a simple mineral processing plant.
	the pre-prepare method of separation.
	physical separation method according to the
	difference of gravity or surface properties,
	dewatering and tailing disposal, and the
	overall introduction of the coal bearing non-
	metallic minerals or tailings as well as their

	individual processing and applications.
	procedures for a mineral dressing plant design
	the responsibility of the mineral processing
	engineer.
Languages of instruction	English
Teaching and learning	Lecture, site visit, written exam (80%) and one
method (delivery of skills)	mini-design report (20%)
workload for students	The total time budgeted for the cluster is 180 h
	(50 academic hours are spent in class, 30 hours
	are spent in site visit and 100 hours are spent on
	self-study).
Further information	
Recommended reading	B. A. WILLS, Mineral processing technology.
	British, 1981.
Note	

Rock Mechanics for Underground Mining

Course Nb	CUMTB011MAOB2
Credits	6
Туре	Lecture / Site visit
Lecturer	Yixin Zhao
C	Course description
Content	Rock mechanics and mining engineering
	Rock mass structure
	Rock strength and deformability
	Pre-mining state of stress
	Excavation design in stratified rock
	Excavation design in jointed rock
	Mine stability and rockbursts /coal bumps
	Rock deformation in deep mining
	Monitoring rock mass performance
	Advanced simulation methods for mine design
	Ground control
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic knowledge on stress and strain
Objective	On completion of this course the participants shall
(expected results of study	be able to have
and acquired competences)	the basic principles in rock mechanics
	including: stress analysis, geology,
	discontinuities, rock mass classification, etc.
	the application of the rock mechanics
	principles for the overall analysis and design
	of various ground control sub-systems
	including: entry widths, pillars, roof bolts,
	supplemental support, slopes, etc.

	numerous practical applications of		
	mathematics, mechanics and engineering to		
	solve problems and design sub-systems		
	related to ground control.		
Languages of instruction	English		
Teaching and learning	Lecture, site visit, written or oral exam (90		
method (delivery of skills)	minutes) and one homework		
workload for students	The total time budget for the course is 180 h (60		
	academic hours are spent in class, 30 hours are		
	spent in site visit and 90 hours are spent on self-		
	study).		
F	Further information		
Recommended reading	Brady, B. H. G., Brown, E. T.: Rock Mechanics		
	For Underground Mining, Kluwer Academic		
	Publishers, 2004		
	Hudson, J.A., Harrison, J. P.: Engineering rock		
	mechanics, Elsevier Science Ltd., 1997		
	Peng, S. S., 2008, Coal Mine Ground Control,		
	3rd edition, Morgantown, WV, 750 p		
Note			

Safety Engineering in Mine

Course Nb	CUMTB011MAOB4
Credits	5
Туре	Lecture + site visit
Lecturer	Kai Wang, Baisheng Nie, Dr. Aitao Zhou, et al.
C	ourse description
Content	Aim of Safety Engineering in Mine
	Mine ventilation
	 Introduction to fluid dynamics related to
	mine ventilation
	 Fans and auxiliary affiliations
	 Coal Mine ventilation system
	 Coal mine ventilation network analysis
	 Coal mine ventilation planning and
	practice
	Mine gas control
	 Basic knowledge of mine gas
	 Gas explosion
	 Coal and gas outburst
	 Gas drainage
	Mine airborne dust control
	Mine fire control
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic knowledge on fluid flow and
	underground mining.

Objective	On completion of this course the participants shall
(expected results of study	be able to have
and acquired competences)	 key aspects of safety engineering in
	underground coal mines, including the
	design of ventilation system, basic
	knowledge and novel technology of the
	control of mine gas, mine dust and mine
	fire.
Languages of instruction	English
Teaching and learning	Lecture, site visit, written or oral exam (90
method (delivery of skills)	minutes) and one homework
workload for students	The total time budget for the module is 150 h (50
	academic hours are spent in class, 25 hours are
	spent in site visit and 75 hours are spent on self-
	study).
Further information	
Recommended reading	McPherson, M. J. :Subsurface Ventilation
	Engineering, ISBN-13: 978-0412353000
Note	

4. 2 Restricted Electives

Case Study on Mining Safety

Course Nb	CUMTB011MAEL2
Credits	5
Туре	Lecture / Laboratory
Lecturer	Chengwu Li, Baisheng Nie, Xiangchun Li, Jing Li,
	Beijing Xie
C	course description
Content	Gas poisoning, suffocation accident case
	analysis
	Coal and gas outburst accident case analysis
	Gas explosion accident case analysis
	Coal spontaneous combustion disaster case
	analysis
	External-caused fire accident case analysis
	Internal-caused fire accident case analysis
	Pneumoconiosis disaster case analysis
	Coal-dust explosion accident case analysis
	Ground flood accident case analysis
	Underground flood accident case analysis
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic knowledge on Coal Mining Science,
	Mine Ventilation and safety, Coalfield geology,
	Mine pressure and roof control
Objective	On completion of this course the participants shall
(expected results of study	be able to have
and acquired competences)	professional knowledge of disaster prediction
	and prevention during the process of coal
	mine production.
	analyzing the causes, influencing factors and
	preventive actions of methane, fire, dust and

	the representative technology gaps through
	lots of typical accidents cases
	the mechanism of typical accidents, measures
	and actions of preventions and some relevant
	knowledge of management issues from the
	case analysis
	responsibility of a working mining engineer
Languages of instruction	English
Teaching and learning	Lecture, seminar, lab, written or oral exam (90
method (delivery of skills)	minutes) and one homework
workload for students	The total time budget for the module is 100 h (50
	hours are spent in class; 50 hours are spent on
	self-study).
	Sell-Study).
F	Further information
Recommended reading	,
	urther information
	urther information He, X: Theory and Technology for the
	Turther information He, X: Theory and Technology for the Prevention of Coal Mine Disasters, Xuzhou:
	Turther information He, X: Theory and Technology for the Prevention of Coal Mine Disasters, Xuzhou: CUMTP, 2006
	 He, X: Theory and Technology for the Prevention of Coal Mine Disasters, Xuzhou: CUMTP, 2006 Wang, J., Li, W.: Chinese coal mine accidents
	 He, X: Theory and Technology for the Prevention of Coal Mine Disasters, Xuzhou: CUMTP, 2006 Wang, J., Li, W.: Chinese coal mine accidents and expert comments set, Beijing: CCIPH,
	 He, X: Theory and Technology for the Prevention of Coal Mine Disasters, Xuzhou: CUMTP, 2006 Wang, J., Li, W.: Chinese coal mine accidents and expert comments set, Beijing: CCIPH, 2002
	 He, X: Theory and Technology for the Prevention of Coal Mine Disasters, Xuzhou: CUMTP, 2006 Wang, J., Li, W.: Chinese coal mine accidents and expert comments set, Beijing: CCIPH, 2002 Yu, B.: Coal mine gas control and utilization of

Coal Fire Control

Course Nb	CUMTB011MAEL5
Credits	5
Туре	Lecture / Site visit
Lecturer	Hongqing Zhu
	Course description
Content	 Overview of the state of coal fires in the world and in China Overview of coal fire induced hazards such as the loss of valuable coal resources, emission of green-house gases (CO2 and CH4), emission of toxic gases (CO, H2S, NOx, etc.) and trace elements (F, As, Hg, etc.), subsidence, slide slope, etc. Susceptibility of coal to self-ignition and chemical reactions of coal oxidation and combustion Development and propagation of coal fires, crack formation, related ventilation path, and other factors impacting coal fires such as wind, solar heating, precipitation, and mining Overview of techniques controlling coal fires and their own advantages and disadvantages Three-phase foam. This part include introduction of gas, liquid and solid materials; functions of each materials; optimized mass ratios of materials; process of producing three-phase foam; equipment system of producing three-phase foam; the method to calculate the required amount of three-phase foam quenching a coal fire

	Grout injection. This part is consisted of the
	following contents: composition of grout;
	optimized mass ratios of composed ingredients
	of grout; effective grouting area and its
	impacted factors; diameter requirement of solid
	particles; flow resistance of grout in pipes;
	grouting system utilized in in-situ coal fires; the
	method to calculate the required amount of
	grout extinguishing a coal fire
	Gel injection. This part contains: introduction to
	various gel; chemical composition of each gel;
	cost, advantages and disadvantages of each
	gel; effective grouting area and its impacted
	factors; flow characteristics of gel
	transportation in pipes; designed equipment for
	gel injection; the method to calculate the
	required amount of gel extinguishing a coal fire
	Introduction of other approaches such as water
	injection, heat pipes, loess coverage and
	reclamation
	Application to these techniques for control coal
	mine fires, waste pile fires and smoldering fires
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic knowledge on fire safety, combustion
	and physicochemical properties of coal.
Objective	On completion of this course the participants shall
(expected results of study	be able to understand
and acquired competences)	how coal fires develop
	how to control coal fires in order to protect
	valuable resources, environment, and human
	health.
L	

	techniques of controlling coal fires in order to
	control coal mine fires, waste pile fires, and
	other smoldering fires.
Languages of instruction	English
Teaching and learning	Lecture, site visit, written or oral exam (90
method (delivery of skills)	minutes) and one homework
workload for students	The total time budget for the module is 180 h (50
	academic hours are spent in class, 30 hours are
	spent in site visit and 100 hours are spent on self-
	study).
F	urther information
Recommended reading	Coal and peat fires-A global perspective
	(volume 1). New York : Elsevier, 2011. P381
	Theory and techniques of gel extinguishing
	coal seam fires (in Chinese). Beijing: Coal
	Industry Press, 2003. P319
	Theory and techniques of three-phase foam
	controlling spontaneous combustion of coal (in
	Chinese). Xuzhou: China University of Mining
	and Technology Press, 2009. P171
Note	

Coal Mine Backfilling Techniques

Course Nb	CUMTB011MAEL3
Credits	5
Туре	Lecture / Field trip
Lecturer	Di Wu
C	ourse description
Content	Basic Concept and Terminology for Coal Mine
	Backfilling
	Developing trend of Coal Mine Backfilling
	Methods and Technology for Coal Mine
	Backfilling
	Selection and Optimization of the Backfill
	Materials
	Rheological Characteristics of the Backfill
	Slurries
	Transportation of the Backfill Materials
	Coal Mine Backfilling System
	Ground Control Mechanism of the Coal Mine
	Backfills
	Backfilling Costs and Other Considerations
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic knowledge on Elastic-plastic Mechanics,
	Rock Mechanics and Fluid Mechanics
Objective	On completion of this course the participants shall
(expected results of study	be able to have
and acquired competences)	basic theory and technology of coal mine
	backfilling.
	an introduction of the developing trend of coal
	mine backfilling,
	the rheological and transportation properties
	of coal mine backfill slurries, as well as the

	ground control machanism of the healfills
	ground control mechanism of the backfills.
	the craft and technology of coal mine
	backfilling
	the understanding of the significance of coal
	mine backfilling to the environment
	design of a coal mine backfilling system and
	conduct research on coal mine backfilling.
Languages of instruction	English
Teaching and learning	Lecture, site visit, written or oral exam (90
method (delivery of skills)	minutes) and one homework
workload for students	The total time budget for the module is 180 h (50
	academic hours are spent in class, 30 hours are
	spent in site visit and 100 hours are spent on self-
	study).
F	urther information
Recommended reading	Antonov, D.: Mine Backfill Design and
	Characteristics: New Concept for Backfill
	Underground Support, 2009
	Granholm, S. (Editor): Mining with Backfill
	Hardcover, 1983
	Potvin, Y., Thomas, E., Fourie, A.: Handbook
	on Mine Fill, 2005
Note	

Engineering CAD

Course Nb	CUMTB011MAEL1
ECTS	5
Туре	Lecture / Laboratory
Lecturer	Yang Li
C	Course description
Content	Part I. Fundamental of AutoCAD:
	Introduction and starting creating simple
	drawing and plotting
	Control draft settings
	A system of layers
	Using more construct commands
	Annotating and modifying drawings
	Block and wblock references and process
	flowsheet Design
	Dimensioning drawings
	Creating geometric figures and advanced
	modified commands
	Hatching and boundaries
	Part II. Mine Surveying Data analysis and
	Applications:
	Mine surveying data analysis using
	spreadsheet templates
	Applications of SurvCAD/AutoCAD:
	 Mine surveying mapping
	 Mine surface contours/elevation
	topographic mappings
	 Cut/fills volume calculation
	 Underground mine mapping
	 File Management

mapping project report writing-up, and presentation slide creation (if time allowed) Previous knowledge expected • Good English skills (Minimum: CEF Level B1) • Basic knowledge on mining engineering and coal mine geology. On completion of this course the participants shall be able to have • necessary knowledge of engineering CAD concepts and techniques, implementing applications of engineering computer aided design for engineering graphics and plant design, introduction of geometry and calculation of engineering works Languages of instruction Teaching and learning Attendance (15%), AutoCAD homework (30%), class exercise (15%) and final report (40%). The total time budget for the module is 50 h (38 academic hours are spent in class, 12 hours are spent in computer lab and 10 hours are spent on self-study). Further information Recommended reading • Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. • Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY		Organizing and management of files, mine
Previous knowledge expected • Good English skills (Minimum: CEF Level B1) • Basic knowledge on mining engineering and coal mine geology. On completion of this course the participants shall be able to have • necessary knowledge of engineering CAD concepts and techniques, implementing applications of engineering computer aided design for engineering graphics and plant design, introduction of geometry and calculation of engineering works Languages of instruction Teaching and learning method (delivery of skills) workload for students Attendance (15%), AutoCAD homework (30%), class exercise (15%) and final report (40%). The total time budget for the module is 50 h (38 academic hours are spent in class, 12 hours are spent in computer lab and 10 hours are spent on self-study). Further information Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. • Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY		mapping project report writing-up, and
Basic knowledge on mining engineering and coal mine geology. On completion of this course the participants shall be able to have necessary knowledge of engineering CAD concepts and techniques, implementing applications of engineering computer aided design for engineering graphics and plant design, introduction of geometry and calculation of engineering works Languages of instruction English Attendance (15%), AutoCAD homework (30%), class exercise (15%) and final report (40%). The total time budget for the module is 50 h (38 academic hours are spent in class, 12 hours are spent in computer lab and 10 hours are spent on self-study). Further information Recommended reading Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY		presentation slide creation (if time allowed)
Coal mine geology. Objective (expected results of study and acquired competences) Increase and techniques, implementing applications of engineering computer aided design for engineering graphics and plant design, introduction of geometry and calculation of engineering works Languages of instruction Teaching and learning method (delivery of skills) workload for students The total time budget for the module is 50 h (38 academic hours are spent in class, 12 hours are spent in computer lab and 10 hours are spent on self-study). Further information Recommended reading Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY	Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
On completion of this course the participants shall be able to have • necessary knowledge of engineering CAD concepts and techniques, implementing applications of engineering computer aided design for engineering graphics and plant design, introduction of geometry and calculation of engineering works Languages of instruction Teaching and learning method (delivery of skills) workload for students The total time budget for the module is 50 h (38 academic hours are spent in class, 12 hours are spent in computer lab and 10 hours are spent on self-study). Further information Recommended reading • Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. • Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY		Basic knowledge on mining engineering and
be able to have		coal mine geology.
necessary knowledge of engineering CAD concepts and techniques, implementing applications of engineering computer aided design for engineering graphics and plant design, introduction of geometry and calculation of engineering works Languages of instruction English	Objective	On completion of this course the participants shall
concepts and techniques, implementing applications of engineering computer aided design for engineering graphics and plant design, introduction of geometry and calculation of engineering works Languages of instruction Teaching and learning Attendance (15%), AutoCAD homework (30%), class exercise (15%) and final report (40%). The total time budget for the module is 50 h (38 academic hours are spent in class, 12 hours are spent in computer lab and 10 hours are spent on self-study). Further information Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY	(expected results of study	be able to have
applications of engineering computer aided design for engineering graphics and plant design, introduction of geometry and calculation of engineering works Languages of instruction English Attendance (15%), AutoCAD homework (30%), class exercise (15%) and final report (40%). The total time budget for the module is 50 h (38 academic hours are spent in class, 12 hours are spent in computer lab and 10 hours are spent on self-study). Further information Recommended reading Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY	and acquired competences)	necessary knowledge of engineering CAD
design for engineering graphics and plant design, introduction of geometry and calculation of engineering works Languages of instruction Teaching and learning Attendance (15%), AutoCAD homework (30%), class exercise (15%) and final report (40%). The total time budget for the module is 50 h (38 academic hours are spent in class, 12 hours are spent in computer lab and 10 hours are spent on self-study). Further information Recommended reading Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY		concepts and techniques, implementing
design, introduction of geometry and calculation of engineering works Languages of instruction Teaching and learning Method (delivery of skills) workload for students The total time budget for the module is 50 h (38 academic hours are spent in class, 12 hours are spent in computer lab and 10 hours are spent on self-study). Further information Recommended reading Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY		applications of engineering computer aided
Calculation of engineering works English Teaching and learning method (delivery of skills) workload for students The total time budget for the module is 50 h (38 academic hours are spent in class, 12 hours are spent in computer lab and 10 hours are spent on self-study). Further information Recommended reading Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY		design for engineering graphics and plant
Languages of instructionEnglishTeaching and learning method (delivery of skills)Attendance (15%), AutoCAD homework (30%), class exercise (15%) and final report (40%).Workload for studentsThe total time budget for the module is 50 h (38 academic hours are spent in class, 12 hours are spent in computer lab and 10 hours are spent on self-study).Further informationRecommended reading• Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014.• Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY		design, introduction of geometry and
Teaching and learning method (delivery of skills) workload for students The total time budget for the module is 50 h (38 academic hours are spent in class, 12 hours are spent in computer lab and 10 hours are spent on self-study). Further information Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY		calculation of engineering works
class exercise (15%) and final report (40%). The total time budget for the module is 50 h (38 academic hours are spent in class, 12 hours are spent in computer lab and 10 hours are spent on self-study). Further information Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY	Languages of instruction	English
The total time budget for the module is 50 h (38 academic hours are spent in class, 12 hours are spent in computer lab and 10 hours are spent on self-study). Further information Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY	Teaching and learning	Attendance (15%), AutoCAD homework (30%),
academic hours are spent in class, 12 hours are spent in computer lab and 10 hours are spent on self-study). Further information Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY	method (delivery of skills)	class exercise (15%) and final report (40%).
spent in computer lab and 10 hours are spent on self-study). Further information Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY	workload for students	The total time budget for the module is 50 h (38
Further information • Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. • Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY		academic hours are spent in class, 12 hours are
Further information Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY		spent in computer lab and 10 hours are spent on
 Peng, F. F., Civil Suite (SurvCADD) integrated with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY 		self-study).
with AutoCAD manual, Surveying Data Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. • Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY	F	urther information
Analysis using spreadsheet templates Notes, Mining Engineering Department, WVU, Morgantown, WV, 2014. • Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY	Recommended reading	Peng, F. F., Civil Suite (SurvCADD) integrated
Mining Engineering Department, WVU, Morgantown, WV, 2014. • Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY		with AutoCAD manual, Surveying Data
Morgantown, WV, 2014. • Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY		Analysis using spreadsheet templates Notes,
Stellman, T. A., Krishnan, G. V.: Harnessing AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY		Mining Engineering Department, WVU,
AutoCAD: 2013 and Beyond, Autodesk Press, Albany, NY		Morgantown, WV, 2014.
Albany, NY		Stellman, T. A., Krishnan, G. V.: Harnessing
		AutoCAD: 2013 and Beyond, Autodesk Press,
Note		Albany, NY
Note	Note	

Pit Mining and Environment

Course Nb	CUMTB011MAEL4
Credits	5
Туре	Lecture / Site visit
Lecturer	Chunlai Wang
C	ourse description
Content	Basic Concept of Open Pit Mining
	Process of Open Pit Mining
	Determination of the Mining Limit of an Open
	Pit Mine
	Open Pit Development
	Production capability
	Schedule of Extraction and Development
	Waterproof and Drainage
	The risk of progressive failure of pit slopes
	Reclamation and Environment Rehabilitation
	Design work of an Open Pit Mine
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic knowledge on blasting engineering, rock
	mechanics and mining machinery.
Objective	On completion of this course the participants shall
(expected results of study	be able to have
and acquired competences)	basic concept and terminology in open pit
	mining.
	the procedure and technology for developing
	an open pit mine.
	the design principle, design approach and
	management technology of open pit mining
	the knowledge of surface mining equipment
	and the environment-related problems
	induced by open pit mining

	the ability to plan, design, construct, manage
	an open pit mine, as well as how to conduct
	research on surface mining.
Languages of instruction	English
Teaching and learning	Problem-based learning lecture, site visit, written
method (delivery of skills)	or oral exam (90 minutes) and one homework
workload for students	The total time budget for the module is 180 h (50
	academic hours are spent in class, 30 hours are
	spent in site visit and 90 hours are spent on self-
	study).
Further information	
Recommended reading	Hustrulidand, W. A., Kuchta, M.: Open Pit Mine
	Planning and Design, 2006
	Kennedy, B. A.: Surface Mining, 1990
Note	

5. Amirkabir University of Technology Tehran, Iran

5. 1 Compulsory Subjects

Advanced Engineering Mathematics

Course Nb	
Credits	3
Туре	Lecture
Lecturer	Dr Hamed Molladavoodi
C	Course description
Content	Tensor &Vector Calculus;Index Notation
	Tensors algebra operation;Vector Calculus
	Fourier series; oven and odd fourier series
	oven and odd fourier series;derivation from fourier
	series;Fourier integral and convention;partial
	differential equations;wave equation;thermal
	equation
	Laplacian equations;complex variables;analytical
	functions;continuity of complex function;complex
	integrals; engineering applications
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Engineering mathematics
Objective	On completion of this course the participants shall
(expected results of study	be able to Understand advanced engineering
and acquired competences)	mathematics and its use in rock mechanics
Languages of instruction	English
Teaching and learning	Theoretical Lecture
method (delivery of skills)	
workload for students	
F	urther information
Recommended reading	

Advanced Rock Mechanics

Type Lecture Dr H. Salari Rad / Dr H. Molladavoodi Course description Content Introduction- Rock and rock materials: phy properties and mechanical behavior of roc Rock strength: uniaxial and three-axial strength, tension and bending resistance of fractured rocks, effect of anisotropy on roc strength, Yielding criterion of rocks: elastic and brittl failure criterion, plastic failure criterion Laboratory tests in rock's behavior study: static and dynamic tests, size effect and st	
Course description Content Introduction- Rock and rock materials: phy properties and mechanical behavior of roc Rock strength: uniaxial and three-axial strength, tension and bending resistance of fractured rocks, effect of anisotropy on roc strength, Yielding criterion of rocks: elastic and brittl failure criterion, plastic failure criterion Laboratory tests in rock's behavior study: static and dynamic tests, size effect and st	
Content Introduction- Rock and rock materials: phy properties and mechanical behavior of roc Rock strength: uniaxial and three-axial strength, tension and bending resistance of fractured rocks, effect of anisotropy on roc strength, Yielding criterion of rocks: elastic and brittle failure criterion, plastic failure criterion Laboratory tests in rock's behavior study: static and dynamic tests, size effect and st	
 Introduction- Rock and rock materials: phy properties and mechanical behavior of roc Rock strength: uniaxial and three-axial strength, tension and bending resistance of fractured rocks, effect of anisotropy on roc strength, Yielding criterion of rocks: elastic and brittle failure criterion, plastic failure criterion Laboratory tests in rock's behavior study: static and dynamic tests, size effect and stemperature. 	
properties and mechanical behavior of roc Rock strength: uniaxial and three-axial strength, tension and bending resistance of fractured rocks, effect of anisotropy on roc strength, Yielding criterion of rocks: elastic and brittle failure criterion, plastic failure criterion Laboratory tests in rock's behavior study: static and dynamic tests, size effect and static and dynamic tests, size effect and static and static and dynamic tests, size effect and static and static and dynamic tests, size effect and static and static and dynamic tests, size effect and static and static and dynamic tests, size effect and static and	
gradient on rock's behavior, Instrumentation in rock mechanics, In-situ techniques for rock's behavior study shear strength test, In-situ stress and deformation measurement techniques, Rock mechanics application in design of the tunnels, rock slopes and rock foundation, rock slopes and rock foundation, rock simprovement strength methods.	ess en

Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	The course is planned for the Rock Mechanics
	MSc. students with mining, civil or geology
	engineering BSc. formation.
Course Objective:	On completion of this course the participants shall
(expected results of study	be able to:
and acquired competences) Languages of instruction Teaching and learning	 Evaluate the stability of rock structures such as tunnels, caverns, slopes and other underground structures, and to analyze and solve an unstable condition in these structures. Design of tunneling, mining layout and rock support. English
method (delivery of skills)	
workload for students	
F	urther information
Recommended reading	 Brady BHG, Brown ET. Rock mechanics: for underground mining, UK: Chapman & Hall; 1999 Hoek & Brown, Underground Excavations in Rock, 1980 Goodman, R.E., Introduction to Rock Mechanics, 2nd Ed. 1989 Obert & Duvall, Rock Mechanics and the Design of Structures in Rock, 1967. Pariseau, William G., Design Analysis in Rock Mechanics

	J.C. Jaeger, N.G.W. Cook, R. Zimmerman,
	Fundamentals of Rock Mechanics (Fourth
	Edition). (2007) Blackwell
Course goal achievement	4 assignments (20%), 1 Seminar (15%), 2.5-hr
measures:	final exam (45%), Course project (20%)

Continuum and Discontinuum Mechanics in Rocks

Course Nb	
Credits	3
Туре	Lecture
Lecturer	Dr Hossein Salari Rad
	Course description
Content	Introduction and assumption in continuum rock
	media,
	Stress, stress tensor, deviatoric stress,
	equilibrium equations, stress projection on a
	plane, sum and subtraction of stress,
	Maximum shear stress, Octahedral stress,
	Strain, Deformations, Lagrangian and Eulerian
	deformation description, Small limited strains,
	Compatibilities' equations,
	Linear and non-linear elastic stress-strain
	relationship,
	Solid stress relationships, Stress equilibrium
	equations, Stress compatibilities' equations,
	Elasticity equations in special conditions,
	Plasticity, Introduction on physical plastic
	behavior of materials,
	Yield stress surface equation for Tresca, Von
	Mises, Mohr-Coulomb and Drucker Prager,
	Flow rule, Plastic potential,
	Fracturing, Flow rule in discontinue media,
	Constitutive laws in discontinue media
	fracture mechanics(LEFM basic),
	Mechanical behavior of single fracture and
	models
	Water flow in discontinue media

	Homogenization and equivalent properties in fractured media
Previous knowledge expected	 Good English skills (Minimum: CEF Level B1) The course is planned for the Rock Mechanics MSc. students with mining, civil or geology engineering BSc. formation.
Objective	On the completion of this course, the
(expected results of study	participants shall acquire the ability to perform
and acquired competences)	analytical solutions for problems involved in
	rock mechanics Eng. Field. The analytical
	technics are based on the:
	o Continuum media conditions,
	 Discontinuous media conditions.
Languages of instruction	English
Teaching and learning	Theoretical Lecture
method (delivery of skills)	
workload for students	
F	urther information
Recommended reading	 Jing, L., Stevenson, O., Fundamentals of Discrete Element Methods For Rock Engineering: Theory And Applications, 2007 Mase, G. Thomas, Mase, George E., Continuum Mechanics for Engineers, 2nd edition, 1999 Priest, S.D., Discontinuity analysis for rock engineering, 1992 Reddy, J. N., An Introduction to Continuum Mechanics with Applications, Texas A&M University, 2007
Course goal achievement	4 assignments (20%), 2.5-hr final exam (60%),
measures:	Course project (20%)

Design & Planning of Underground Spaces

Course Nb	
Credits	3
Туре	Lecture
Lecturer	Prof. K. Shahriar
C	ourse description
Content	Type of underground spaces
	Role of geology in underground space deign
	In situ stress and its measurement
	Induced stress and its distribution
	Ground improvement techniques
	Excavation of underground spaces in soft and
	hard ground
	Stability analysis and support design using;
	empirical, observational, analytical and
	numerical methods
	Different type of rock support and
	reinforcement systems
	Stability analyse of underground spaces using
	structural methods
	Effect of dynamic loading on underground
	space stability
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
	Basic knowledge on geology,
	Good knowledge on rock mechanics & rock
	properties
	Basic knowledge of statics & strength of
	materials

Objective	The main objective of the course is to go over the
(expected results of study	fundamentals of underground spaces design for
and acquired competences)	mining and civil engineering. The students are
,	expected to enhance their understanding and
	skills of different design methods such as
	empirical, observational and analytical technics.
	The student achievements will be measured
	through two exams in the 5 th and 10 th weeks of
	semester, plus a final project assignment, and a
	final exam. It is expected that students submit a
	·
	professional report on the project assignment.
	The quality of this report is an indicative of
	student achievements from the course. On
	completion of this course the participants shall be
	able: to employ different design methods in
	underground mining and civil engineering
	application, design of underground excavation
	and selection of most suitable support systems.
Languages of instruction	English
Teaching and learning	Theoretical part: lecture
method (delivery of skills)	Practical part: covers demonstration with short
workload for students	exercises on real data and a homework
	assignment with final presentation
F	urther information
Recommended reading	Brady BHG, Brown ET. Rock mechanics: for
	underground mining, UK: Chapman & Hall;
	1999
	Feng XT., Hudson, J. H., Rock Engineering
	Design, 2011
	Herget, G., Stresses in rock, Taylor & Francis,
	1987

	Hoek & Brown, Underground Excavations in
	Rock, 1980
	Hoek, E., Kaiser, P. K., Bawden, W. F.,
	Support of Underground Excavations in Hard
	Rock
	Sinha, R., Underground structures, Design
	and instrumentation,
Note	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.

Numerical Methods in Geomechanics

Course Nb	
Credits	3
Туре	Lecture
Lecturer	Dr A. Mortazavi
C	ourse description
Content	Introduction to numerical methods
	Finite Element Method, Finite Difference,
	Method, Boundary Element method
	Equation solvers
	Components of a FEM program
	Formulative procedures
	Planar elements, Isoperimetric elements,
	Error analysis
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
Objective	The main objective of the course is to cover the
(expected results of study	fundamentals of numerical modelling focusing on
and acquired competences)	the finite element method. The students are
	expected to enhance their understanding of
	continuum mechanics principles within the
	context of numerical modelling. The focus of the
	course will be applied numerical modelling
	portraying the application of numerical methods in
	Geomechanics design. The student
	achievements will be measured through series of
	bi-weekly assignments, a final project
	assignment, and a final exam. It is expected that
	students submit a professional report on the
	project assignment. The quality of this report is an
	indicative of student achievements from the
	course. On completion of this course the

	participants shall be able to employ numerical
	methods in rock engineering applications
Languages of instruction	English
Teaching and learning	Lecture/programming/Assignments
method (delivery of skills)	
workload for students	
	Further information
Recommended reading	Bathe, K.J., Finite Element Procedures in
	Engineering Analysis, Prentic Hall Ltd., 1982
	Cook, R. D., Concepts & Applications of Finite
	Element Analysis, John Wiley & Sons, 3rd Ed.,
	1989,
	Naylor. D. J., Pande, G. N., Finite Elements in
	Geotechnical Engineering, Dieneridge Press,
	UK, 1981,
	All Notes Taught & Distributed in Class
Note	Have a fair knowledge of engineering
	mathematics

5. 2 Restricted Electives

Advanced Slope Stability

Course Nb	
Credits	2
Туре	Lecture
Lecturer	Dr A. Mortazavi
C	ourse description
Content	Mechanics of rock slopes
	Input data and design parameters
	Slope failure mechanisms
	Slope design methods
	In situ testing and slope monitoring
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)
Objective	The main objective of the course is to cover the
(expected results of study	fundamentals of rock slope engineering focusing
and acquired competences)	on high slopes. The students are expected to
	enhance their understanding of advance rock
	mechanic principles within the context of slope
	stability. The focus of the course will be the
	design of high rock slopes as applied to mining
	and civil engineering. The student achievements
	will be measured through practical project
	assignment and a final project assignment, and a
	final exam. It is expected that students submit a
	professional report on the project assignment.
	The quality of this report and also the score
	achieved in the final exam are indicatives of
	student achievements from the course.
	On completion of this course the participants shall
	be able to design slopes and understand the
	mechanisms involved in high slopes

Languages of instruction	English
Teaching and learning	Lecture/Assignments
method (delivery of skills)	
workload for students	
Further information	
Recommended reading	Hoek, E., Rock Slope Engineering, 1988
	All Geotechnical Engineering Text Books
	All notes taught & distributed in class
Note	Have a fair knowledge of engineering
	mathematics and advanced rock mechanics

Plasticity and Damage Mechanics in Rocks

Credits 3 Type Lecture Lecturer Dr H. Molladavoodi Course description	
Lecturer Dr H. Molladavoodi	
Course description	
-	
Content elasticity theory; plasticity theory principles;	
elastic-plastic models for rock; phenomenolo	gical
damage model; direct micromechanical dama	age
mechanics	
micromechanical damage mechanics based	on
homogenization; plasticity and damage intera	
morning of management, placement, and damage missis	1011011
numerical implementations	
Previous knowledge expected • Good English skills (Minimum: CEF Level	B1)
Elasticity theory	,
Good background in engineering mathem.	atics
Objective On completion of this course the participants	
(expected results of study be able to have a profound knowledge of Ro	
and acquired competences) damage and nonlinearity	
Languages of instruction English	
Teaching and learning Theoretical lecture	
method (delivery of skills)	
workload for students	
Further information	
Recommended reading	

Rock Dynamics

Course Nb		
Credits	3	
Туре	Lecture	
Lecturer	Dr A. Mortazavi	
Course description		
Content	Rock dynamics Fundamentals	
	Wave equation	
	Wave propagation in geomeaterials	
	Rock fragmentation by blasting & Blasting	
	mechanisms	
	Application of mine induced seismicity to mine	
	design	
	Dynamic properties of rocks	
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)	
Objective	The main objective of the course is to cover the	
(expected results of study	fundamentals of rock dynamics focusing on the	
and acquired competences)	wave propagation, rock burst, and dynamic rock	
	fragmentation. The students are expected to	
	enhance their understanding of physics of wave	
	propagation within geomeaterials and rock	
	dynamic principles. The focus of the course will	
	be blast-induced rock fragmentation and mine-	
	induced seismicity as applied to the design of	
	deep underground openings. The student	
	achievements will be measured through a	
	professional technical seminar and a final exam.	
	It is expected that students present a professional	
	oral seminar on a subject within the course scope	
	The quality of this seminar and the score	
	achieved in the final exam are indicatives of	

	student achievements from the course.	
	On completion of this course the participants shall	
	be able to understand the dynamic problems in	
	rock engineering applications	
Languages of instruction	English	
Teaching and learning	Lecture/Assignments	
method (delivery of skills)		
workload for students		
Further information		
Recommended reading	Persen, L. N., Rock Dynamics & Geophysical	
Recommended reading	Persen, L. N., Rock Dynamics & Geophysical Exploration: Introduction to Stress Waves in	
Recommended reading		
Recommended reading	Exploration: Introduction to Stress Waves in	
Recommended reading Note	Exploration: Introduction to Stress Waves in Rocks, Elsevier Ltd., 1975	

Tunnel Basin Site Investigations

Course Nb		
Credits	3	
Туре	Lecture	
Lecturer	Dr H. Molladavoodi	
Course description		
Content	introduction, importance of site investigation	
	alignment selection	
	geometric specification of tunnel	
	Data collection	
	surface geological investigation	
	Geophysics studies	
	Exploration boring	
	Exploration boring	
	Hydrology study	
	In situ tests	
	Engineering services for studies	
	Risk evaluation	
	Settlement evaluation	
	Settlement evaluation	
	Environmental evaluation	
	earthquake studies	
	site evaluation	
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)	
	Rock & soil mechanics	
Objective	On completion of this course the participants shall	
(expected results of study	be able to	
and acquired competences)	prepare data for feasibility study,	
	optimum choice selection,	
	optimum design	
	risk management	

Languages of instruction	English	
Teaching and learning	Lecture	
method (delivery of skills)		
workload for students		
Further information		
Recommended reading		